Skip to main content
Log in

Method for Fast Estimation of Lattice Distortion Energy in Organic Semiconductors

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The efficient operation of organic electronic devices requires a high mobility of charge carriers in their active layers. According to modern concepts, the charge mobility in the best organic semiconductors is limited by dynamic disorder, i.e., fluctuations of intermolecular charge transfer integrals caused by the nonlocal electron–phonon coupling and thermal motion of molecules. However, the estimate of nonlocal electron–phonon coupling currently requires time- and resource-consuming methods, which complicates the search for high-mobility organic semiconductors among numerous candidates. In this work, a method has been proposed to rapidly estimate the lattice distortion energy, which is the main characteristic of the nonlocal electron–phonon coupling, by comparing the reorganization energies of molecules and molecular dimers. The determined lattice distortion energies are in good agreement with the values previously obtained by other methods. Furthermore, the proposed method has allowed addressing the effect of intermolecular delocalization on the nonlocal electron–phonon coupling. The results obtained indicate that the proposed approach is promising for the efficient search for organic semiconductors with a weak nonlocal electron–phonon coupling and a high charge mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Silin’sh, M. V. Kurik, and V. Chapek, Electronic Processes in Organic Molecular Crystals. Localization Phenomena and Polarities (Zinatne, Riga, 1988) [in Russian].

    Google Scholar 

  2. Y. Li, V. Coropceanu, and J.-L. Bredas, in Wspc Reference on Organic Electronics: Organic Semiconductors, Ed. by. S. R. Marder and J.-L. Bredas (World Scientific, Singapore, 2016), Chap. 7, p. 193.

  3. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Bredas, Chem. Rev. 107, 926 (2007).

    Article  Google Scholar 

  4. S. Fratini, S. Ciuchi, D. Mayou, G. Trambly de Laissardiere, and A. Troisi, Nat. Mater. 16, 998 (2017).

    Article  ADS  Google Scholar 

  5. S. Fratini, D. Mayou, and S. Ciuchi, Adv. Funct. Mater. 26, 2292 (2015).

    Article  Google Scholar 

  6. A. Troisi and G. Orlandi, J. Phys. Chem. A 110, 4065 (2006).

    Article  Google Scholar 

  7. A. Y. Sosorev, D. R. Maslennikov, O. G. Kharlanov, I. Y. Chernyshov, V. V. Bruevich, and D. Y. Paraschuk, Phys. Status Solidi RRL 13, 1800485 (2019).

    Article  Google Scholar 

  8. I. Y. Chernyshov, M. V. Vener, E. V. Feldman, D. Y. Paraschuk, and A. Y. Sosorev, J. Phys. Chem. Lett. 8, 2875 (2017).

    Article  Google Scholar 

  9. T. Vehoff, B. Baumeier, A. Troisi, and D. Andrienko, J. Am. Chem. Soc. 132, 11702 (2010).

    Article  Google Scholar 

  10. S. Illig, A. S. Eggeman, A. Troisi, L. Jiang, C. Warwick, M. Nikolka, G. Schweicher, S. G. Yeates, Y. H. Geerts, J. E. Anthony, and H. Sirringhaus, Nat. Commun. 7, 10736 (2016).

    Article  ADS  Google Scholar 

  11. R. S. Sanchez-Carrera, P. Paramonov, G. M. Day, V. Coropceanu, and J. L. Bredas, J. Am. Chem. Soc. 132, 14437 (2010).

    Article  Google Scholar 

  12. B. Kramer and A. Mackinnon, Rep. Prog. Phys. 56, 1469 (1993).

    Article  ADS  Google Scholar 

  13. J. D. Picon, M. N. Bussac, and L. Zuppiroli, Phys. Rev. B 75, 235106 (2007).

    Article  ADS  Google Scholar 

  14. A. Landi and A. Troisi, J. Phys. Chem. C 122, 18336 (2018).

    Article  Google Scholar 

  15. A. Y. Sosorev, I. Y. Chernyshov, D. Y. Paraschuk, and M. V. Vener, in Molecular Spectroscopy: A Quantum Chemistry Approach, Ed. by. Y. Ozaki, M. J. Wojcik, and J. Popp (Wiley, Weinheim, 2019), Chap. 15, p. 425.

  16. S. Larsson and A. Klimkåns, Mol. Cryst. Liq. Cryst. 355, 217 (2001).

    Article  Google Scholar 

  17. A. Y. Sosorev, Phys. Chem. Chem. Phys. 19, 25478 (2017).

    Article  Google Scholar 

  18. V. Coropceanu, R. S. Sanchez-Carrera, P. Paramonov, G. M. Day, and J.-L. Bredas, J. Phys. Chem. C 113, 4679 (2009).

    Article  Google Scholar 

  19. A. Girlando, L. Grisanti, M. Masino, I. Bilotti, A. Brillante, R. G. Della Valle, and E. Venuti, Phys. Rev. B 82, 035208 (2010).

    Article  ADS  Google Scholar 

  20. A. Girlando, L. Grisanti, M. Masino, A. Brillante, R. G. Della Valle, and E. Venuti, J. Chem. Phys. 135, 084701 (2011).

    Article  ADS  Google Scholar 

  21. M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, Comput. Phys. Commun. 181, 1477 (2010).

    Article  ADS  Google Scholar 

  22. Cambridge Structural Database (CSD). https://doi.org/www.ccdc.cam.ac.uk/solutions/csdsystem/components/csd/.

  23. B. Baumeier, J. Kirkpatrick, and D. Andrienko, Phys. Chem. Chem. Phys. 12, 11103 (2010).

    Article  Google Scholar 

  24. J. Kirkpatrick, Int. J. Quant. Chem. 108, 51 (2008).

    Article  ADS  Google Scholar 

  25. A. Y. Sosorev, D. R. Maslennikov, I. Y. Chernyshov, D. I. Dominskiy, V. V. Bruevich, M. V. Vener, and D. Y. Paraschuk, Phys. Chem. Chem. Phys. 20, 18912 (2018).

    Article  Google Scholar 

  26. L. F. Ji, J. X. Fan, S. F. Zhang, and A. M. Ren, Phys. Chem. Chem. Phys. 20, 3784 (2018).

    Article  Google Scholar 

  27. I. Yavuz, B. N. Martin, J. Park, and K. N. Houk, J. Am. Chem. Soc. 137, 2856 (2015).

    Article  Google Scholar 

  28. L. Tang, M. Long, D. Wang, and Z. Shuai, Sci. China, Ser. B: Chem. 52, 1646 (2009).

    Article  Google Scholar 

  29. Y. Yi, V. Coropceanu, and J.-L. Bredas, J. Chem. Phys. 137, 164303 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am grateful to Prof. D.Yu. Paraschuk for stimulating discussions and valuable recommendations.

Funding

The development of the method was supported by the Russian Foundation for Basic Research (project nos. 16-32-60204 mol_a_dk and 18-52-45024). The quantumchemical calculations, as well as the formulation of the method for estimating the effect of delocalization on the nonlocal electron–phonon coupling, were supported by the Russian Science Foundation (project no. 18-72-10165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Sosorev.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 3, pp. 171–177.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosorev, A.Y. Method for Fast Estimation of Lattice Distortion Energy in Organic Semiconductors. Jetp Lett. 110, 193–199 (2019). https://doi.org/10.1134/S0021364019150141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019150141

Navigation