Realization of a Double-slit SQUID Geometry by Fermi Arc Surface States in a WTe2 Weyl Semimetal

  • O. O. Shvetsov
  • A. Kononov
  • A. V. Timonina
  • N. N. Kolesnikov
  • E. V. Deviatov


We experimentally study electron transport between two superconducting indium leads, coupled to the WTe2 crystal surface.WTe2 is characterized by presence of Fermi arc surface states, as a predicted type-II Weyl semimetal candidate. We demonstrate Josephson current in unprecedentedly long 5 μm In–WTe2–In junctions, which is confirmed by IV curves evolution with temperature and magnetic field. The Josephson current is mostly carried by the topological surface states, which we demonstrate in a double-slit superconducting quantum interference device geometry, realized by coupling the opposite WTe2 crystal surfaces.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    As a recent review see: N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 15001 (2018).Google Scholar
  2. 2.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    A. Bansil, H. Lin, and T. Das, Rev. Mod. Phys. 88, 021004 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    C.-K. Chiu, J. C. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod. Phys. 88, 035005 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    Ch. Wang, Y. Zhang, J. Huang et al. (Collaboration), Phys. Rev. B 94, 241119(R) (2016).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Wu, D. Mou, N. H. Jo, K. Sun, L. Huang, S. L. Budko, P. C. Canfield, and A. Kaminski, Phys. Rev. B 94, 121113(R) (2016).ADSCrossRefGoogle Scholar
  8. 8.
    M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M. Wang, K. Xu, Z. Huang, Z. Wang, H.-Z. Lu, D. Xing, B. Wang, X. Wan, and F. Miao, Nat. Commun. 7, 13142 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    A. Kononov, V. A. Kostarev, B. R. Semyagin, V. V. Preobrazhenskii, M. A. Putyato, E. A. Emelyanov, and E. V. Deviatov, Phys. Rev. B 96, 245304 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    A. Kononov, S. V. Egorov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and E. V. Deviatov, Phys. Rev. B 93, 041303(R) (2016).ADSCrossRefGoogle Scholar
  12. 12.
    A. Kononov, S. V. Egorov, N. Titova, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and E. V. Deviatov, JETP Lett. 101, 41 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. Lett. 93, 156804 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 96407 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    For recent reviews, see C. W. J. Beenakker, Annu. Rev. Con. Mat. Phys. 4, 113 (2013); J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).Google Scholar
  18. 18.
    W. Chen, L. Jiang, R. Shen, L. Sheng, B. G. Wang, and D. Y. Xing, EPL 103, 27006 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    C. W. J. Beenakker, Phys. Rev. Lett. 97 (2006).Google Scholar
  20. 20.
    C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    T. Meng and L. Balents, Phys. Rev. B 86, 054504 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    G. Y. Cho, J. H. Bardarson, Y.-M. Lu, and J. E. Moore, Phys. Rev. B 86, 214514 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    H. Wei, S. P. Chao, and V. Aji, Phys. Rev. B 89, 014506 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov, K. Watanabe, T. Taniguchi, T. M. Klapwijk, and L. M. K. Vandersypen, Nature Nanotech. 10, 761 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    I. V. Borzenets, F. Amet, C. T. Ke, A. W. Draelos, M. T. Wei, A. Seredinski, K. Watanabe, T. Taniguchi, Y. Bomze, M. Yamamoto, S. Tarucha, and G. Finkelstein, Phys. Rev. Lett. 117, 237002 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mhlbauer, C. Brne, H. Buhmann, L. W. Molenkamp, and A. Yacoby, Nature Phys. 10, 638 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    V. S. Pribiag, A. J. A. Beukman, F. Qu, M. C. Cassidy, C. Charpentier, W. Wegscheider, and L. P. Kouwenhoven, Nature Nanotech. 10, 593 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    M. Tinkham, Introduction to Superconductivity, 2-nd ed., McGrawHill, N. Y. (1996).Google Scholar
  29. 29.
    J. H. Lee, G.-H. Lee, J. Park, J. Lee, S.-G. Nam, Y.-S. Shin, J. S. Kim, and H.-J. Lee, Nano Lett. 14(9), 5029 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    E. B. Borisenko, V. A. Berezin, N. N. Kolesnikov, V. K. Gartman, D. V. Matveev, and O. F. Shakhlevich, Phys. Solid State 59, 1310 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    A. Sidorov, A. E. Petrova, A. N. Pinyagin, N. N. Kolesnikov, S. S. Khasanov, and S. M. Stishov, JETP 122, 1047 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    A. M. Toxen, Phys. Rev. 123, 442 (1961).ADSCrossRefGoogle Scholar
  33. 33.
    P. Scharnhorst, Phys. Rev. B 1, 4295 (1970).ADSCrossRefGoogle Scholar
  34. 34.
    I. O. Kulik, Sov. Phys. JETP 30, 944 (1970).ADSGoogle Scholar
  35. 35.
    P. Dubos, H. Courtois, B. Pannetier, F. K. Wilhelm, A. D. Zaikin, and G. Schön, Phys. Rev. B 63, 064502 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    F. Y. Bruno, A. Tamai, Q. S. Wu, I. Cucchi, C. Barreteau, A. de la Torre, S. McKeown Walker, S. Riccò, Z. Wang, T. K. Kim, M. Hoesch, M. Shi, N. C. Plumb, E. Giannini, A. A. Soluyanov, and F. Baumberger, Phys. Rev. B 94, 121112(R) (2016).ADSCrossRefGoogle Scholar
  37. 37.
    J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. O. Shvetsov
    • 1
  • A. Kononov
    • 1
  • A. V. Timonina
    • 1
  • N. N. Kolesnikov
    • 1
  • E. V. Deviatov
    • 1
  1. 1.Institute of Solid State Physics of the Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations