Skip to main content
Log in

Realization of a Double-Slit SQUID Geometry by Fermi Arc Surface States in a WTe2 Weyl Semimetal

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We experimentally study electron transport between two superconducting indium leads, coupled to the WTe2 crystal surface. WTe2 is characterized by presence of Fermi arc surface states, as a predicted type-II Weyl semimetal candidate. We demonstrate Josephson current in unprecedentedly long 5 µm In–WTe2–In junctions, which is confirmed by IV curves evolution with temperature and magnetic field. The Josephson current is mostly carried by the topological surface states, which we demonstrate in a double-slit superconducting quantum interference device geometry, realized by coupling the opposite WTe2 crystal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 15001 (2018).

    Article  ADS  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  3. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  4. A. Bansil, H. Lin, and T. Das, Rev. Mod. Phys. 88, 021004 (2016).

    Article  ADS  Google Scholar 

  5. C.-K. Chiu, J. C. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod. Phys. 88, 035005 (2016).

    Article  ADS  Google Scholar 

  6. Ch. Wang, Y. Zhang, J. Huang, et al., Phys. Rev. 94, 241119(R) (2016).

    Article  Google Scholar 

  7. Y. Wu, D. Mou, N. H. Jo, K. Sun, L. Huang, S. L. Budko, P. C. Canfield, and A. Kaminski, Phys. Rev. 94, 121113(R) (2016).

    Article  Google Scholar 

  8. M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature (London, U.K.) 514, 205 (2014).

    Article  ADS  Google Scholar 

  9. Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M. Wang, K. Xu, Z. Huang, Z. Wang, H.-Z. Lu, D. Xing, B. Wang, X. Wan, and F. Miao, Nat. Commun. 7, 13142 (2016).

    Article  ADS  Google Scholar 

  10. A. Kononov, V. A. Kostarev, B. R. Semyagin, V. V. Preobrazhenskii, M. A. Putyato, E. A. Emelyanov, and E. V. Deviatov, Phys. Rev. 96, 245304 (2017).

    Article  Google Scholar 

  11. A. Kononov, S. V. Egorov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and E. V. Deviatov, Phys. Rev. 93, 041303(R) (2016).

    Article  ADS  Google Scholar 

  12. A. Kononov, S. V. Egorov, N. Titova, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and E. V. Deviatov, JETP Lett. 101, 41 (2015).

    Article  ADS  Google Scholar 

  13. S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. Lett. 93, 156804 (2004).

    Article  ADS  Google Scholar 

  14. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  15. B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).

    Article  ADS  Google Scholar 

  16. L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 96407 (2008).

    Article  ADS  Google Scholar 

  17. For recent reviews, see C. W. J. Beenakker, Ann. Rev. Cond. Mat. Phys. 4, 113 (2013); J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

    Article  ADS  Google Scholar 

  18. W. Chen, L. Jiang, R. Shen, L. Sheng, B. G. Wang, and D. Y. Xing, Eur. Phys. Lett. 103, 27006 (2013).

    Article  ADS  Google Scholar 

  19. C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006).

    Article  ADS  Google Scholar 

  20. C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).

    Article  ADS  Google Scholar 

  21. T. Meng and L. Balents, Phys. Rev. 86, 054504 (2012).

    Article  ADS  Google Scholar 

  22. G. Y. Cho, J. H. Bardarson, Y.-M. Lu, and J. E. Moore, Phys. Rev. 86, 214514 (2012).

    Article  Google Scholar 

  23. H. Wei, S. P. Chao, and V. Aji, Phys. Rev. 89, 014506 (2014).

    Article  ADS  Google Scholar 

  24. V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov, K. Watanabe, T. Taniguchi, T. M. Klapwijk, and L. M. K. Vandersypen, Nat. Nanotechnol. 10, 761 (2015).

    Article  ADS  Google Scholar 

  25. I. V. Borzenets, F. Amet, C. T. Ke, A. W. Draelos, M. T. Wei, A. Seredinski, K. Watanabe, T. Taniguchi, Y. Bomze, M. Yamamoto, S. Tarucha, and G. Finkelstein, Phys. Rev. Lett. 117, 237002 (2016).

    Article  ADS  Google Scholar 

  26. S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mhlbauer, C. Brne, H. Buhmann, L. W. Molenkamp, and A. Yacoby, Nat. Phys. 10, 638 (2014).

    Article  Google Scholar 

  27. V. S. Pribiag, A. J. A. Beukman, F. Qu, M. C. Cassidy, C. Charpentier, W. Wegscheider, and L. P. Kouwenhoven, Nat. Nanotechnol. 10, 593 (2015)

    Article  ADS  Google Scholar 

  28. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).

    Google Scholar 

  29. J. H. Lee, G.-H. Lee, J. Park, J. Lee, S.-G. Nam, Y.-S. Shin, J. S. Kim, and H.-J. Lee, Nano Lett. 14, 5029 (2014).

    Article  ADS  Google Scholar 

  30. E. B. Borisenko, V. A. Berezin, N. N. Kolesnikov, V. K. Gartman, D. V. Matveev, and O. F. Shakhlevich, Phys. Solid Stat. 59, 1310 (2017).

    Article  ADS  Google Scholar 

  31. A. Sidorov, A. E. Petrova, A. N. Pinyagin, N. N. Kolesnikov, S. S. Khasanov, and S. M. Stishov, J. Exp. Theor. Phys. 122, 1047 (2016).

    Article  ADS  Google Scholar 

  32. A. M. Toxen, Phys. Rev. 123, 442 (1961).

    Article  ADS  Google Scholar 

  33. P. Scharnhorst, Phys. Rev. 1, 4295 (1970).

    Article  ADS  Google Scholar 

  34. I. O. Kulik, Sov. Phys. JET. 30, 944 (1970).

    ADS  Google Scholar 

  35. P. Dubos, H. Courtois, B. Pannetier, F. K. Wilhelm, A. D. Zaikin, and G. Schon, Phys. Rev. 63, 064502 (2001).

    Article  Google Scholar 

  36. F. Y. Bruno, A. Tamai, Q. S. Wu, I. Cucchi, C. Barreteau, A. de la Torre, S. McKeown Walker, S. Ricco, Z. Wang, T. K. Kim, M. Hoesch, M. Shi, N. C. Plumb, E. Giannini, A. A. Soluyanov, and F. Baumberger, Phys. Rev. 94, 121112(R) (2016).

    Article  ADS  Google Scholar 

  37. J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Deviatov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvetsov, O.O., Kononov, A., Timonina, A.V. et al. Realization of a Double-Slit SQUID Geometry by Fermi Arc Surface States in a WTe2 Weyl Semimetal. Jetp Lett. 107, 774–779 (2018). https://doi.org/10.1134/S0021364018120020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018120020

Navigation