Skip to main content
Log in

Production of heavy quarkonia in hadronic experiments

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Processes of single and pair production of heavy quarkonia under LHC conditions have been studied within nonrelativistic quantum chromodynamics. Constraints on the matrix elements of color-singlet and color-octet states have been obtained by analyzing the existing experimental data. It has been shown that the leading contribution to the cross sections for these processes comes from the color singlet mechanism with the singlet matrix elements exceeding phenomenological values obtained from the solutions of potential models or experimental decay widths of the corresponding mesons. It has also been found that the contribution from color-octet states should be taken into account to describe the ratio of the cross sections for the production of tensor and axial charmonia. These results have been used to analyze the single production of bottomonia, the pair production of heavy quarkonia, and the production of vector charmonium in jets. The resulting theoretical predictions are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Kartvelishvili, A. K. Likhoded, and S. R. Slabospitsky, Sov. J. Nucl. Phys. 33, 434 (1981).

    Google Scholar 

  2. R. Baier and R. Ruckl, Z. Phys. C 19, 251 (1983).

    Article  ADS  Google Scholar 

  3. G. T. Bodwin, E. Braaten, G. P. Lepage, Phys. Rev. D 51, 1125 (1995); hep-ph/9407339; Phys. Rev. D 55, 5853(E) (1997).

    Article  ADS  Google Scholar 

  4. D. Stump, J. Huston, J. Pumplin, W. K. Tung, H. L. Lai, S. Kuhlmann, and J. F. Owens, J. High Energy Phys. 0310, 046 (2003); hep-ph/0303013. doi 10.1088/1126-6708/2003/10/04610.1088/1126-6708/2003/10/046

    Article  ADS  Google Scholar 

  5. H. L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010); arXiv:1007.2241 [hep-ph]. doi 10.1103/Phys-RevD.82.074024

    Article  ADS  Google Scholar 

  6. S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, and C.-P. Yuan, Phys. Rev. D 93, 033006 (2016); arXiv:1506.07443 [hep-ph]. doi 10.1103/Phys-RevD.93.033006.10.1103/PhysRevD.93.033006

    Article  ADS  Google Scholar 

  7. E. Braaten and J. Lee, Phys. Rev. D 67, 054007 (2003); hep-ph/0211085; Phys. Rev. D 72, 099901(E) (2005).

    Article  ADS  Google Scholar 

  8. S. P. Baranov, A. V. Lipatov, and N. P. Zotov, Phys. Rev. D 93, 094012 (2016); arXiv:1510.02411.

    Article  ADS  Google Scholar 

  9. M. M. Meijer, J. Smith, and W. L. van Neerven, Phys. Rev. D 77, 034014 (2008); arXiv:0710.3090.

    Article  ADS  Google Scholar 

  10. R. Aaij, C. A. Beteta, B. Adeva, et al. (LHCb Collab.), Eur. Phys. J. C 75, 311 (2015); arXiv:1409.3612.

    Article  ADS  Google Scholar 

  11. A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, Mod. Phys. Lett. A 30, 1550032 (2015); arXiv:1411.1247.

    Article  ADS  Google Scholar 

  12. R. Aaij, C. A. Beteta, B. Adeva, et al. (LHCb Collab.), Phys. Lett. B 714, 215 (2012); arXiv:1202.1080.

    Article  ADS  Google Scholar 

  13. S. Chatrchyan, V. Khachatryan, A. M. Sirunyan, et al. (CMS Collab.), Eur. Phys. J. C 72, 2251 (2012); arXiv:1210.0875.

    Article  ADS  Google Scholar 

  14. ATLAS Collab., ATLAS-CONF-2013-095.

  15. R. Aaij, C. A. Beteta, B. Adeva, et al. (LHCb Collab.), J. High Energy Phys. 10, 115 (2013); arXiv:1307.4285.

    Article  ADS  Google Scholar 

  16. A. Abulencia, J. Adelman, T. Affolder, et al. (CDF Collab.), Phys. Rev. Lett. 98, 232001 (2007); hepex/0703028.

    Article  ADS  Google Scholar 

  17. F. Abe and H. Akimoto, A. Akopian, et al. (CDF Collab.), Phys. Rev. Lett. 79, 578 (1997).

    Article  ADS  Google Scholar 

  18. A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, Phys. Rev. D 86, 074027 (2012); arXiv:1203.4893.

    Article  ADS  Google Scholar 

  19. P. Faccioli, M. Araujo, V. Knunz, I. Kratschmer, C. Lourenco, and J. Seixas, arXiv:1702.04207.

  20. CMS Collab., CMS-PAS-BPH-13-005.

  21. A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, Phys. Rev. D 91, 114016 (2015); arXiv:1503.00246.

    Article  ADS  Google Scholar 

  22. I. F. Ginzburg, S. L. Panfil, and V. G. Serbo, Nucl. Phys. B 296, 569 (1988).

    Article  ADS  Google Scholar 

  23. A. K. Likhoded, A. V. Luchinsky, S. V. Poslavsky, Phys. Rev. D 94, 054017 (2016); arXiv:1606.06767.

    Article  ADS  Google Scholar 

  24. A. V. Luchinsky, J. Phys.: Conf. Ser. 770, 012004 (2016).

    Google Scholar 

  25. R. Aaij, C. A. Beteta, B. Adeva, et al. (LHCb Collab.), arXiv:1701.05116.

  26. T. Sjostrand, S. Mrenna, and P. Z. Skands, Comput. Phys. Commun. 178, 852 (2008); arXiv:0710.3820.

    Article  ADS  Google Scholar 

  27. E. Braaten, K.-M. Cheung, and T. C. Yuan, Phys. Rev. D 48, R5049 (1993); hep-ph/9305206.

    Article  ADS  Google Scholar 

  28. V. V. Kiselev, A. K. Likhoded, and M. V. Shevlyagin, Z. Phys. C 63, 77 (1994).

    Article  ADS  Google Scholar 

  29. A. Novoselov, Phys. At. Nucl. 73, 1740 (2010); arXiv:1007.0846.

    Article  Google Scholar 

  30. G. Corcella and G. Ferrera, J. High Energy Phys. 12, 029 (2007); arXiv:0706.2357.

    Article  ADS  Google Scholar 

  31. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

    Google Scholar 

  32. L. N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975).

    Google Scholar 

  33. Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

    ADS  Google Scholar 

  34. G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

    Article  ADS  Google Scholar 

  35. I. Belyaev, A. V. Berezhnoy, A. K. Likhoded, and A. V. Luchinsky, arXiv:1703.09081.

  36. E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977).

    ADS  Google Scholar 

  37. E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 44, 443 (1976).

    ADS  Google Scholar 

  38. I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).

    Google Scholar 

  39. S. P. Baranov and A. V. Lipatov, arXiv:1611.0141 [hepph].

  40. S. P. Baranov, A. V. Lipatov, and N. P. Zotov, Eur. Phys. J. C 75, 455 (2015); arXiv:1508.05480 [hep-ph].

    Article  ADS  Google Scholar 

  41. M. Butenschoen and B. A. Kniehl, Phys. Rev. D 84, 051501 (2011); arXiv:1105.0820 [hep-ph].

    Article  ADS  Google Scholar 

  42. J. M. Campbell, F. Maltoni, and F. Tramontano, Phys. Rev. Lett. 98, 252002 (2007); hep-ph/0703113.

    Article  ADS  Google Scholar 

  43. P. Artoisenet, J. M. Campbell, J. P. Lansberg, F. Maltoni, and F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008); arXiv:0806.3282 [hep-ph].

    Article  ADS  Google Scholar 

  44. Y. Q. Ma, K. Wang, and K. T. Chao, Phys. Rev. D 84, 114001 (2011); arXiv:1012.1030 [hep-ph].

    Article  ADS  Google Scholar 

  45. G. T. Bodwin, H. S. Chung, U. R. Kim, and J. Lee, Phys. Rev. Lett. 113, 022001 (2014); arXiv:1403.3612 [hep-ph].

    Article  ADS  Google Scholar 

  46. A. V. Berezhnoy, A. K. Likhoded, A. I. Onishchenko, and S. V. Poslavsky, Nucl. Phys. B 915, 224 (2017); arXiv:1610.00354.

    Article  ADS  Google Scholar 

  47. A. Likhoded, A. Luchinsky, and S. Poslavsky, Phys. Lett. B 755, 24 (2016); arXiv:1511.04851.

    Article  ADS  Google Scholar 

  48. S. Poslavsky and D. Bolotin, J. Phys.: Conf. Ser. 608, 012060 (2015).

    Google Scholar 

  49. A. K. Likhoded, A. V. Luchinsky, and S. Poslavsky, PoSBaldin ISHEPP XXII (2014).

    Google Scholar 

  50. J. V. Balitsky and V. V. Kiselev, J. Cosmol. Astropart. Phys. 1504 (04), 032 (2015); arXiv:1410.2528.

    Article  ADS  Google Scholar 

  51. A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, Phys. Rev. D 90, 074021 (2014); arXiv:1409.0693.

    Article  ADS  Google Scholar 

  52. J. V. Balitsky and V. V. Kiselev, Phys. Rev. D 90, 125017 (2014); arXiv:1406.3046.

    Article  ADS  Google Scholar 

  53. A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, Phys. Rev. D 90, 034017 (2014); arXiv:1404.2441.

    Article  ADS  Google Scholar 

  54. D. A. Bolotin and S. V. Poslavsky, arXiv:1302.1219.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Likhoded.

Additional information

Original Russian Text © A.K. Likhoded, A.V. Luchinsky, S.V. Poslavsky, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 11, pp. 707–720.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhoded, A.K., Luchinsky, A.V. & Poslavsky, S.V. Production of heavy quarkonia in hadronic experiments. Jetp Lett. 105, 739–751 (2017). https://doi.org/10.1134/S002136401711008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401711008X

Navigation