Skip to main content
Log in

Production of heavy quarkonia in hadronic experiments

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The phenomenology of the production of P-wave χ c,b mesons and S-wave η c,b mesons in highenergy hadron–hadron collisions was studied on the basis of nonrelativistic quantum chromodynamics (NRQCD). Available experimental data on χ c -meson production were analyzed, and nonperturbative NRQCDmatrix elements were determined from a fit to these data. It is shown that the observed transversemomentum (pT) spectrum of χ c mesons is basically formed by color-singlet contributions. At the same time, the ratio σ(χ c2)/σ(χ c1) depends greatly on color-octet contributions; this ratio therefore becomes a highly sensitive tool for separating different NRQCD contributions. Predictions for χ b -meson production are obtained on the basis of NRQCD scaling rules. For the case of η c -meson production, it is shown that the observed cross sections agree with the color-singlet model featuring phenomenological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Kartvelishvili, A. K. Likhoded, and S. R. Slabospitskiiĭ, Sov. J. Nucl. Phys. 28, 678 (1978).

    Google Scholar 

  2. R. Baier and R. Rückl, Z. Phys. C 19, 251 (1983).

    Article  ADS  Google Scholar 

  3. G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D 51, 1125 (1995); hep-ph/9407339.

    Article  ADS  Google Scholar 

  4. A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, Phys. Rev. D 86, 074027 (2012); arXiv:1203.4893.

    Article  ADS  Google Scholar 

  5. A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, arXiv:1305.2389.

  6. R. Gastmans, W. Troost, and T. T. Wu, Nucl. Phys. B 291, 731 (1987).

    Article  ADS  Google Scholar 

  7. P. Cho and A. K. Leibovich, Phys. Rev. D 53, 150 (1996a); hep-ph/9505329.

    Article  ADS  Google Scholar 

  8. P. Cho and A. K. Leibovich, Phys. Rev. D 53, 6203 (1996b); hep-ph/9511315.

    Article  ADS  Google Scholar 

  9. M. Klasen, B. A. Kniehl, L. N. Mihaila, and M. Steinhauser, Phys. Rev. D 68, 034017 (2003); hepph/0306080.

    Article  ADS  Google Scholar 

  10. M. M. Meijer, J. Smith, and W. L. van Neerven, Phys. Rev. D 77, 034014 (2008); arXiv:0710.3090.

    Article  ADS  Google Scholar 

  11. J. Pumplin, D. Stump, J. Huston, H. Lai, P. M. Nadolsky, et al., J. High Energy Phys. 0207, 012 (2002); hep-ph/0201195.

    Article  ADS  Google Scholar 

  12. M. Whalley, D. Bourilkov, and R. Group, hepph/0508110.

  13. L. Landau, Dokl. Akad. Nauk SSSR 60, 207 (1948).

    Google Scholar 

  14. C. N. Yang, Phys. Rev. 77, 242 (1950).

    Article  ADS  MATH  Google Scholar 

  15. C. R. Munz, Nucl. Phys. A 609, 364 (1996); hepph/9601206.

    Article  ADS  Google Scholar 

  16. D. Ebert, R. N. Faustov, and V.O. Galkin, Mod. Phys. Lett. A 18, 601 (2003); hep-ph/0302044.

    Article  ADS  Google Scholar 

  17. V. V. Anisovich, L. G. Dakhno, M. A. Matveev, V. A. Nikonov, and A. V. Sarantsev, Phys. Atom.Nucl. 70, 63 (2007); hep-ph/0510410.

    Article  ADS  Google Scholar 

  18. G.-L. Wang, Phys. Lett. B 674, 172 (2009); arXiv:0904.1604.

    Article  ADS  Google Scholar 

  19. B.-Q. Li and K.-T. Chao, Commun. Theor. Phys. 52, 653 (2009); arXiv: 0909.1369.

    Article  ADS  Google Scholar 

  20. C.-W. Hwang and R.-S. Guo, Phys. Rev. D 82, 034021 (2010); arXiv:1005.2811.

    Article  ADS  Google Scholar 

  21. CDF Collab (F. Abe et al.), Phys. Rev. Lett. 79, 578 (1997).

    Article  ADS  Google Scholar 

  22. CDF Collab. (A. Abulencia et al.), Phys. Rev. Lett. 98, 232001 (2007); hep-ph/0703028.

    Article  ADS  Google Scholar 

  23. CMS Collab. (S. Chatrchyan et al.), Eur. Phys. J. C 72, 2251 (2012); arXiv:1210.0875.

    Article  ADS  Google Scholar 

  24. LHCb Collab. (R. Aaij et al.), Phys. Lett. B 714, 215 (2012); arXiv:1202.1080.

    Article  ADS  Google Scholar 

  25. LHCb Collab. (R. Aaij et al.), J. High Energy Phys. 1310, 115 (2013); arXiv:1307.4285.

  26. ATLAS Collab., ATLAS-CONF-2013-095, ATLAS-COM-CONF-2013-115 (2013).

    Google Scholar 

  27. CMS Collab., CMS-PAS-BPH-13-005 (2013).

    Google Scholar 

  28. Belle Collab. (K. Abe et al.), Phys. Rev. Lett. 89, 142001 (2002); hep-ex/0205104.

    Article  ADS  Google Scholar 

  29. V. V. Braguta, A. K. Likhoded, and A. V. Luchinsky, Phys. Rev. D 79, 074004 (2009); arXiv:0810.3607.

    Article  ADS  Google Scholar 

  30. V. V. Braguta, A. K. Likhoded, and A. V. Luchinsky, Phys. Rev. D 78, 074032 (2008); arXiv: 0808.2118.

    Article  ADS  Google Scholar 

  31. B.A Kniehl, G. Kramer, and C. P. Palisoc, Phys.Rev. D 68, 114002 (2003); hep-ph/0307386.

    Article  ADS  Google Scholar 

  32. LHCb Collab. (R. Aaij et al.), arXiv:1409.3612 (2014).

  33. A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, arXiv:1411.1247.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Likhoded.

Additional information

Original Russian Text © A.K. Likhoded, A.V. Luchinsky, S.V. Poslavsky, 2015, published in Yadernaya Fizika, 2015, Vol. 78, No. 12, pp. 1119–1128.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhoded, A.K., Luchinsky, A.V. & Poslavsky, S.V. Production of heavy quarkonia in hadronic experiments. Phys. Atom. Nuclei 78, 1056–1065 (2015). https://doi.org/10.1134/S1063778815090100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815090100

Keywords

Navigation