Skip to main content
Log in

Enhanced vibrational quantum dynamics beyond the rotating wave approximation

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We investigate the vibrational dynamics of a quantum mechanical resonator when an ensemble of laser pumped two-level emitters are fixed on it. Beyond the rotating wave approximation with respect to phonon’s variables, one can obtain an interesting phonon quantum dynamics if the quantum emitter’s variables are faster than those describing the mechanical resonator. Particularly, for certain parameters, one can obtain an enhanced phonon emission as well as larger phonon–phonon correlations in the steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Eoma, H. S. Park, D. S. Yoonc, and T. Kwon, Phys. Rep. 503, 115 (2011).

    Article  ADS  Google Scholar 

  2. J.-J. Li and K.-D. Zhu, Phys. Rep. 525, 223 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Lambrecht M.-T. Jaekel, and S. Reynaud, Phys. Rev. Lett. 77, 615 (1996).

    Article  ADS  Google Scholar 

  4. N. Spethmann, J. Kohler, S. Schreppler, L. Buchmann, and D. M. Stamper-Kurn, Nat. Phys. 12, 27 (2016).

    Article  Google Scholar 

  5. X.-Z. Yuan, Phys. Rev. A 88, 052317 (2013).

    Article  ADS  Google Scholar 

  6. L. G. Villanueva, R. B. Karabalin, M. H. Matheny, D. Chi, J. E. Sader, and M. L. Roukes, Phys. Rev. B 87, 024304 (2013).

    Article  ADS  Google Scholar 

  7. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  8. Y. Greenberg, Y. Pashkin, and E. Il’ichev, Phys. Usp. 55, 382 (2012).

    Article  ADS  Google Scholar 

  9. J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkila, P. J. Hakonen, and M. A. Sillanpaa, Nat. Commun. 6, 6981 (2015).

    Article  Google Scholar 

  10. H. Wang, X. Gu, Y.-X. Liu, A. Miranowicz, and F. Nori, Phys. Rev. A 90, 023817 (2014).

    Article  ADS  Google Scholar 

  11. S. Carlig and M. A. Macovei, Phys. Rev. A 89, 053803 (2014).

    Article  ADS  Google Scholar 

  12. R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, Nature 530, 313 (2016).

    Article  ADS  Google Scholar 

  13. K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, Phys. Rev. Lett. 102, 020501 (2009).

    Article  ADS  Google Scholar 

  14. B. Vogell, T. Kampschulte, M. T. Rakher, A. Faber, P. Treutlein, K. Hammerer, and P. Zoller, New J. Phys. 17, 043044 (2015).

    Article  ADS  Google Scholar 

  15. S. Singh, M. Bhattacharya, O. Dutta, and P. Meystre, Phys. Rev. Lett. 101, 263603 (2008).

    Article  ADS  Google Scholar 

  16. M. J. Akram, M. M. Khan, and F. Saif, Phys. Rev. A 92, 023846 (2015).

    Article  ADS  Google Scholar 

  17. Q. Wang, J.-Q. Zhang, P.-X. Ma, C.-M. Yao, and M. Feng, Phys. Rev. A 91, 063827 (2015).

    Article  ADS  Google Scholar 

  18. T. Kipf and G. S. Agarwal, Phys. Rev. A 90, 053808 (2014).

    Article  ADS  Google Scholar 

  19. O. Houhou, H. Aissaoui, and A. Ferraro, Phys. Rev. A 92, 063843 (2015).

    Article  ADS  Google Scholar 

  20. W. Z. Jia, L. F. Wei, Y. Li, and Y.-X. Liu, Phys. Rev. A 91, 043843 (2015).

    Article  ADS  Google Scholar 

  21. R. Leijssen and E. Verhagen, Sci. Rep. 5, 15974 (2015).

    Article  ADS  Google Scholar 

  22. C. Genes, D. Vitali, and P. Tombesi, Phys. Rev. A 77, 050307(R) (2008).

    Article  ADS  Google Scholar 

  23. C. Genes, H. Ritsch, and D. Vitali, Phys. Rev. A 80, 061803(R) (2009).

    Article  ADS  Google Scholar 

  24. J. Restrepo, C. Ciuti, and I. Favero, Phys. Rev. Lett. 112, 013601 (2014).

    Article  ADS  Google Scholar 

  25. A. Dantan, B. Nair, G. Pupillo, and C. Genes, Phys. Rev. A 90, 033820 (2014).

    Article  ADS  Google Scholar 

  26. T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg, Phys. Rev. Lett. 110, 193602 (2013).

    Article  ADS  Google Scholar 

  27. I. Wilson-Rae, P. Zoller, and A. Imamöglu, Phys. Rev. Lett. 92, 075507 (2004).

    Article  ADS  Google Scholar 

  28. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions: Basic Processes and Applications (Wiley, Chichester, 2004).

    Google Scholar 

  29. C. H. Keitel, Mod. Opt. 43, 1555 (1996).

    Article  ADS  Google Scholar 

  30. H. Xiong, M. O. Scully, and M. S. Zubairy, Phys. Rev. Lett. 94, 023601 (2005).

    Article  ADS  Google Scholar 

  31. M. Kiffner, M. S. Zubairy, J. Evers, and C. H. Keitel, Phys. Rev. A 75, 033816 (2007).

    Article  ADS  Google Scholar 

  32. Z.-H. Tang and G.-X. Li, Phys. Rev. A 84, 063801 (2011).

    Article  ADS  Google Scholar 

  33. G.-X. Li and J.-P. Zhu, J. Phys. B: At. Mol. Opt. Phys. 44, 195502 (2011).

    Article  ADS  Google Scholar 

  34. R. J. Glauber, Rev. Mod. Phys. 78, 1267 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Macovei.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlig, S., Macovei, M.A. Enhanced vibrational quantum dynamics beyond the rotating wave approximation. Jetp Lett. 105, 526–530 (2017). https://doi.org/10.1134/S0021364017080033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017080033

Navigation