Advertisement

JETP Letters

, Volume 105, Issue 7, pp 419–425 | Cite as

New allotropic forms of carbon based on С60 and С20 fullerenes with specific mechanical characteristics

  • Yu. A. KvashninaEmail author
  • D. G. Kvashnin
  • A. G. Kvashnin
  • P. B. Sorokin
Condensed Matter
  • 67 Downloads

Abstract

New allotropic forms of carbon based on С60 and С20 fullerenes are considered. The most stable carbon compounds are found using an evolution algorithm, and their crystal structure (X-ray diffraction spectra) and electron (band structure) and mechanical (moduli of elasticity, hardness) characteristics are studied. The carbon phase with the tetragonal symmetry with mechanical properties close to those of a diamond crystal and having a narrow band gap is found.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Sladkov and Y. P. Kudryavtsev, Russ. Chem. Rev. 32, 229 (1963).ADSCrossRefGoogle Scholar
  2. 2.
    H. K. Mao and R. J. Hemley, Nature 351, 721 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    W. U. A. T. Yagi, Science 252, 1542 (1991).ADSCrossRefGoogle Scholar
  4. 4.
    T. Yagi, W. Utsumi, M. Yamakata, T. Kikegawa, and O. Shimomura, Phys. Rev. B 46, 6031 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    J. R. Patterson, A. Kudryavtsev, and Y. K. Vohra, Appl. Phys. Lett. 81, 2073 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    W. L. Mao, H. Mao, P. J. Eng, T. P. Trainor, M. Newville, C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Science 302, 425 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    W. Utsumi, T. Okada, T. Taniguchi, K. Funakoshi, T. Kikegawa, N. Hamaya, and O. Shimomura, J. Phys.: Condens. Matter 16, S1017 (2004).Google Scholar
  8. 8.
    R. B. Aust and H. G. Drickamer, Science 140, 817 (1963).ADSCrossRefGoogle Scholar
  9. 9.
    R. Clarke and C. Uher, Adv. Phys. 33, 469 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya, Nature 421, 599 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    H. Sumiya and T. Irifune, J. Mater. Res. 22, 2345 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A. G. Kvashnin, L. A. Chernozatonskii, B. I. Yakobson, and P. B. Sorokin, Nano Lett. 14, 676 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    A. G. Kvashnin and P. B. Sorokin, J. Phys. Chem. Lett. 5, 541 (2014).CrossRefGoogle Scholar
  14. 14.
    M. Hanfland, K. Syassen, and R. Sonnenschein, Phys. Rev. B 40, 1951 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    Y. X. Zhao and I. L. Spain, Phys. Rev. B 40, 993 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    K. J. Takano, H. Harashima, and M. Wakatsuki, Jpn. J. Appl. Phys. 30, L860 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    S. E. Boulfelfel, A. R. Oganov, and S. Leoni, Sci. Rep. 2, 471 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Wang, J. E. Panzik, B. Kiefer, and K. K. M. Lee, Sci. Rep. 2, 520 (2012).ADSGoogle Scholar
  20. 20.
    Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, and G. Zou, Phys. Rev. Lett. 102, 175506 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    J.-T. Wang, C. Chen, and Y. Kawazoe, Phys. Rev. Lett. 106, 75501 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, and J. Zhong, Solid State Commun. 152, 1560 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    F. Tian, X. Dong, Z. Zhao, J. He, and H.-T. Wang, J. Phys. Condens. Matter 24, 165504 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    D. Selli, I. A. Baburin, R. Martoňák, and S. Leoni, Phys. Rev. B 84, 161411 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    Yu. A. Kvashnina, A. G. Kvashnin, and P. B. Sorokin, J. Appl. Phys. 114, 183708 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    V. D. Blank, S. G. Buga, G. A. Dubitsky, N. R. Serebryanaya, M. Y. Popov, and B. Sundqvist, Carbon 36, 319 (1998).CrossRefGoogle Scholar
  27. 27.
    V. Blank, M. Popov, G. Pivovarov, N. Lvova, K. Gogolinsky, and V. Reshetov, Diamond Relat. Mater. 7, 427 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    Yu. A. Kvashnina, A. G. Kvashnin, M. Y. Popov, B. A. Kulnitskiy, I. A. Perezhogin, E. V. Tyukalova, L. A. Chernozatonskii, P. B. Sorokin, and V. D. Blank, J. Phys. Chem. Lett. 6, 2147 (2015).CrossRefGoogle Scholar
  29. 29.
    Yu. A. Kvashnina, A. G. Kvashnin, L. A. Chernozatonskii, and P. B. Sorokin, Carbon 115, 546 (2017).CrossRefGoogle Scholar
  30. 30.
    L. Wang, B. Liu, H. Li, W. Yang, Y. Ding, S. V. Sinogeikin, Y. Meng, Z. Liu, X. C. Zeng, and W. L. Mao, Science 337, 825 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    C. J. H. Wort and R. S. Balmer, Mater. Today 11, 22 (2008).CrossRefGoogle Scholar
  32. 32.
    P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. V. Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, Eur. Phys. J. B 86, 443 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    L. Reggiani, S. Bosi, C. Canali, F. Nava, and S. F. Kozlov, Phys. Rev. B 23, 3050 (1981).ADSCrossRefGoogle Scholar
  34. 34.
    J. Pernot, C. Tavares, E. Gheeraert, E. Bustarret, M. Katagiri, and S. Koizumi, Appl. Phys. Lett. 89, 122111 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    J.-H. Seo, H. Wu, S. Mikael, J. P. Blanchard, G. Venkataramanan, W. Zhou, S. Gong, D. Morgan, and Z. Ma, J. Appl. Phys. 119, 205703 (2016).ADSCrossRefGoogle Scholar
  36. 36.
    S. Okada, Y. Miyamoto, and M. Saito, Phys. Rev. B 64, 245405 (2001).ADSCrossRefGoogle Scholar
  37. 37.
    C. W. Glass, A. R. Oganov, and N. Hansen, Comput. Phys. Commun. 175, 713 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).ADSCrossRefGoogle Scholar
  39. 39.
    A. R. Oganov, Y. Ma, A. O. Lyakhov, M. Valle, and C. Gatti, Rev. Mineral. Geochem. 71, 271 (2010).CrossRefGoogle Scholar
  40. 40.
    M. O’Keeffe, Nature 352, 674 (1991).ADSCrossRefGoogle Scholar
  41. 41.
    L. Chernozatonskii, N. Serebryanaya, and B. Mavrin, Chem. Phys. Lett. 316, 199 (1999).ADSCrossRefGoogle Scholar
  42. 42.
    H. Zhu, J. Li, N. Xu, Y. Han, Y. Meng, Y. Lin, X. Zhang, and Z. Jiang, Diamond Relat. Mater. 55, 139 (2015).ADSCrossRefGoogle Scholar
  43. 43.
    S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).ADSCrossRefGoogle Scholar
  44. 44.
    S. Plimpton, J. Comp. Phys. 117, 1 (1995).ADSCrossRefGoogle Scholar
  45. 45.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  46. 46.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  47. 47.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  48. 48.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, Phys. Rev. Lett. 91, 15502 (2003).ADSCrossRefGoogle Scholar
  50. 50.
    X.-Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).CrossRefGoogle Scholar
  51. 51.
    A. Filippetti and N. A. Hill, Phys. Rev. Lett. 85, 5166 (2000).ADSCrossRefGoogle Scholar
  52. 52.
    V. D. Blank, V. V. Aksenenkov, M. Y. Popov, S. A. Perfilov, B. A. Kulnitskiy, Y. V. Tatyanin, O. M. Zhigalina, B. N. Mavrin, V. N. Denisov, A. N. Ivlev, V. M. Chernov, and V. A. Stepanov, Diamond Relat. Mater. 8, 1285 (1999).ADSCrossRefGoogle Scholar
  53. 53.
    M. L. Cohen, Phys. Rev. B 32, 7988 (1985).ADSCrossRefGoogle Scholar
  54. 54.
    R. A. Andrievski, Int. J. Refract. Met. Hard Mater. 19, 447 (2001).CrossRefGoogle Scholar
  55. 55.
    K. E. Spear and J. P. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology (Wiley, New York, 1994).Google Scholar
  56. 56.
    W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, Oxford, UK, 1967).Google Scholar
  57. 57.
    P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).ADSCrossRefGoogle Scholar
  58. 58.
    G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, Nat. Mater. 10, 823 (2011).ADSCrossRefGoogle Scholar
  59. 59.
    A. O. Lyakhov and A. R. Oganov, Phys. Rev. B 84, 92103 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • Yu. A. Kvashnina
    • 1
    • 2
    Email author
  • D. G. Kvashnin
    • 3
    • 4
    • 5
  • A. G. Kvashnin
    • 2
    • 6
  • P. B. Sorokin
    • 1
    • 3
    • 4
  1. 1.Technological Institute for Superhard and Novel Carbon MaterialsTroitsk, MoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyState UniversityDolgoprudnyi, Moscow regionRussia
  3. 3.National University of Science and Technology MISiSMoscowRussia
  4. 4.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  5. 5.Pirogov Russian National Research Medical UniversityMoscowRussia
  6. 6.Skolkovo Institute of Science and TechnologySkolkovo, Moscow regionRussia

Personalised recommendations