Skip to main content
Log in

New allotropic forms of carbon based on С60 and С20 fullerenes with specific mechanical characteristics

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

New allotropic forms of carbon based on С60 and С20 fullerenes are considered. The most stable carbon compounds are found using an evolution algorithm, and their crystal structure (X-ray diffraction spectra) and electron (band structure) and mechanical (moduli of elasticity, hardness) characteristics are studied. The carbon phase with the tetragonal symmetry with mechanical properties close to those of a diamond crystal and having a narrow band gap is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Sladkov and Y. P. Kudryavtsev, Russ. Chem. Rev. 32, 229 (1963).

    Article  ADS  Google Scholar 

  2. H. K. Mao and R. J. Hemley, Nature 351, 721 (1991).

    Article  ADS  Google Scholar 

  3. W. U. A. T. Yagi, Science 252, 1542 (1991).

    Article  ADS  Google Scholar 

  4. T. Yagi, W. Utsumi, M. Yamakata, T. Kikegawa, and O. Shimomura, Phys. Rev. B 46, 6031 (1992).

    Article  ADS  Google Scholar 

  5. J. R. Patterson, A. Kudryavtsev, and Y. K. Vohra, Appl. Phys. Lett. 81, 2073 (2002).

    Article  ADS  Google Scholar 

  6. W. L. Mao, H. Mao, P. J. Eng, T. P. Trainor, M. Newville, C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Science 302, 425 (2003).

    Article  ADS  Google Scholar 

  7. W. Utsumi, T. Okada, T. Taniguchi, K. Funakoshi, T. Kikegawa, N. Hamaya, and O. Shimomura, J. Phys.: Condens. Matter 16, S1017 (2004).

    Google Scholar 

  8. R. B. Aust and H. G. Drickamer, Science 140, 817 (1963).

    Article  ADS  Google Scholar 

  9. R. Clarke and C. Uher, Adv. Phys. 33, 469 (1984).

    Article  ADS  Google Scholar 

  10. T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya, Nature 421, 599 (2003).

    Article  ADS  Google Scholar 

  11. H. Sumiya and T. Irifune, J. Mater. Res. 22, 2345 (2007).

    Article  ADS  Google Scholar 

  12. A. G. Kvashnin, L. A. Chernozatonskii, B. I. Yakobson, and P. B. Sorokin, Nano Lett. 14, 676 (2014).

    Article  ADS  Google Scholar 

  13. A. G. Kvashnin and P. B. Sorokin, J. Phys. Chem. Lett. 5, 541 (2014).

    Article  Google Scholar 

  14. M. Hanfland, K. Syassen, and R. Sonnenschein, Phys. Rev. B 40, 1951 (1989).

    Article  ADS  Google Scholar 

  15. Y. X. Zhao and I. L. Spain, Phys. Rev. B 40, 993 (1989).

    Article  ADS  Google Scholar 

  16. K. J. Takano, H. Harashima, and M. Wakatsuki, Jpn. J. Appl. Phys. 30, L860 (1991).

    Article  ADS  Google Scholar 

  17. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).

    Article  ADS  Google Scholar 

  18. S. E. Boulfelfel, A. R. Oganov, and S. Leoni, Sci. Rep. 2, 471 (2012).

    Article  ADS  Google Scholar 

  19. Y. Wang, J. E. Panzik, B. Kiefer, and K. K. M. Lee, Sci. Rep. 2, 520 (2012).

    ADS  Google Scholar 

  20. Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, and G. Zou, Phys. Rev. Lett. 102, 175506 (2009).

    Article  ADS  Google Scholar 

  21. J.-T. Wang, C. Chen, and Y. Kawazoe, Phys. Rev. Lett. 106, 75501 (2011).

    Article  ADS  Google Scholar 

  22. C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, and J. Zhong, Solid State Commun. 152, 1560 (2012).

    Article  ADS  Google Scholar 

  23. F. Tian, X. Dong, Z. Zhao, J. He, and H.-T. Wang, J. Phys. Condens. Matter 24, 165504 (2012).

    Article  ADS  Google Scholar 

  24. D. Selli, I. A. Baburin, R. Martoňák, and S. Leoni, Phys. Rev. B 84, 161411 (2011).

    Article  ADS  Google Scholar 

  25. Yu. A. Kvashnina, A. G. Kvashnin, and P. B. Sorokin, J. Appl. Phys. 114, 183708 (2013).

    Article  ADS  Google Scholar 

  26. V. D. Blank, S. G. Buga, G. A. Dubitsky, N. R. Serebryanaya, M. Y. Popov, and B. Sundqvist, Carbon 36, 319 (1998).

    Article  Google Scholar 

  27. V. Blank, M. Popov, G. Pivovarov, N. Lvova, K. Gogolinsky, and V. Reshetov, Diamond Relat. Mater. 7, 427 (1998).

    Article  ADS  Google Scholar 

  28. Yu. A. Kvashnina, A. G. Kvashnin, M. Y. Popov, B. A. Kulnitskiy, I. A. Perezhogin, E. V. Tyukalova, L. A. Chernozatonskii, P. B. Sorokin, and V. D. Blank, J. Phys. Chem. Lett. 6, 2147 (2015).

    Article  Google Scholar 

  29. Yu. A. Kvashnina, A. G. Kvashnin, L. A. Chernozatonskii, and P. B. Sorokin, Carbon 115, 546 (2017).

    Article  Google Scholar 

  30. L. Wang, B. Liu, H. Li, W. Yang, Y. Ding, S. V. Sinogeikin, Y. Meng, Z. Liu, X. C. Zeng, and W. L. Mao, Science 337, 825 (2012).

    Article  ADS  Google Scholar 

  31. C. J. H. Wort and R. S. Balmer, Mater. Today 11, 22 (2008).

    Article  Google Scholar 

  32. P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. V. Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, and I. Kratochvílová, Eur. Phys. J. B 86, 443 (2013).

    Article  ADS  Google Scholar 

  33. L. Reggiani, S. Bosi, C. Canali, F. Nava, and S. F. Kozlov, Phys. Rev. B 23, 3050 (1981).

    Article  ADS  Google Scholar 

  34. J. Pernot, C. Tavares, E. Gheeraert, E. Bustarret, M. Katagiri, and S. Koizumi, Appl. Phys. Lett. 89, 122111 (2006).

    Article  ADS  Google Scholar 

  35. J.-H. Seo, H. Wu, S. Mikael, J. P. Blanchard, G. Venkataramanan, W. Zhou, S. Gong, D. Morgan, and Z. Ma, J. Appl. Phys. 119, 205703 (2016).

    Article  ADS  Google Scholar 

  36. S. Okada, Y. Miyamoto, and M. Saito, Phys. Rev. B 64, 245405 (2001).

    Article  ADS  Google Scholar 

  37. C. W. Glass, A. R. Oganov, and N. Hansen, Comput. Phys. Commun. 175, 713 (2006).

    Article  ADS  Google Scholar 

  38. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).

    Article  ADS  Google Scholar 

  39. A. R. Oganov, Y. Ma, A. O. Lyakhov, M. Valle, and C. Gatti, Rev. Mineral. Geochem. 71, 271 (2010).

    Article  Google Scholar 

  40. M. O’Keeffe, Nature 352, 674 (1991).

    Article  ADS  Google Scholar 

  41. L. Chernozatonskii, N. Serebryanaya, and B. Mavrin, Chem. Phys. Lett. 316, 199 (1999).

    Article  ADS  Google Scholar 

  42. H. Zhu, J. Li, N. Xu, Y. Han, Y. Meng, Y. Lin, X. Zhang, and Z. Jiang, Diamond Relat. Mater. 55, 139 (2015).

    Article  ADS  Google Scholar 

  43. S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).

    Article  ADS  Google Scholar 

  44. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  45. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  46. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  47. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  48. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  49. F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, Phys. Rev. Lett. 91, 15502 (2003).

    Article  ADS  Google Scholar 

  50. X.-Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).

    Article  Google Scholar 

  51. A. Filippetti and N. A. Hill, Phys. Rev. Lett. 85, 5166 (2000).

    Article  ADS  Google Scholar 

  52. V. D. Blank, V. V. Aksenenkov, M. Y. Popov, S. A. Perfilov, B. A. Kulnitskiy, Y. V. Tatyanin, O. M. Zhigalina, B. N. Mavrin, V. N. Denisov, A. N. Ivlev, V. M. Chernov, and V. A. Stepanov, Diamond Relat. Mater. 8, 1285 (1999).

    Article  ADS  Google Scholar 

  53. M. L. Cohen, Phys. Rev. B 32, 7988 (1985).

    Article  ADS  Google Scholar 

  54. R. A. Andrievski, Int. J. Refract. Met. Hard Mater. 19, 447 (2001).

    Article  Google Scholar 

  55. K. E. Spear and J. P. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology (Wiley, New York, 1994).

    Google Scholar 

  56. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, Oxford, UK, 1967).

    Google Scholar 

  57. P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).

    Article  ADS  Google Scholar 

  58. G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, Nat. Mater. 10, 823 (2011).

    Article  ADS  Google Scholar 

  59. A. O. Lyakhov and A. R. Oganov, Phys. Rev. B 84, 92103 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kvashnina.

Additional information

Original Russian Text © Yu.A. Kvashnina, D.G. Kvashnin, A.G. Kvashnin, P.B. Sorokin, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 7, pp. 411–418.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvashnina, Y.A., Kvashnin, D.G., Kvashnin, A.G. et al. New allotropic forms of carbon based on С60 and С20 fullerenes with specific mechanical characteristics. Jetp Lett. 105, 419–425 (2017). https://doi.org/10.1134/S0021364017070104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017070104

Navigation