Skip to main content
Log in

Fermi–Pasta–Ulam recurrence and modulation instability

  • Nonlinear Phenomena
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We give a qualitative conceptual explanation of the Fermi–Pasta–Ulam (FPU) like recurrence in the onedimensional focusing nonlinear Schrodinger equation (NLSE). The recurrence can be considered as a result of the nonlinear development of the modulation instability. All known exact localized solitary wave solutions describing propagation on the background of the modulationally unstable condensate show the recurrence to the condensate state after its interaction with solitons. The condensate state locally recovers its original form with the same amplitude but a different phase after soliton leave its initial region. Based on the integrability of the NLSE, we demonstrate that the FPU recurrence takes place not only for condensate, but also for a more general solution in the form of the cnoidal wave. This solution is periodic in space and can be represented as a solitonic lattice. That lattice reduces to isolated soliton solution in the limit of large distance between solitons. The lattice transforms into the condensate in the opposite limit of dense soliton packing. The cnoidal wave is also modulationally unstable due to soliton overlapping. The recurrence happens at the nonlinear stage of the modulation instability. Due to generic nature of the underlying mathematical model, the proposed concept can be applied across disciplines and nonlinear systems, ranging from optical communications to hydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fermi, J. Pasta, and S. Ulam, Los Alamos Report LA-1940 (Los Alamos, 1955), p.978.

    Google Scholar 

  2. N. J. Zabusky, J. Math. Phys. 3, 1028 (1962).

    Article  ADS  Google Scholar 

  3. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).

    Article  ADS  Google Scholar 

  4. N. J. Zabusky and G. S. Deem, J. Comp. Phys. 2, 126 (1967).

    Article  ADS  Google Scholar 

  5. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).

    Article  ADS  Google Scholar 

  6. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

    ADS  Google Scholar 

  7. V. E. Zakharov and L. D. Faddeev, Funct. Anal. Appl. 5, 280 (1971).

    Article  Google Scholar 

  8. V. E. Zakharov, Sov. Phys. JETP 38, 108 (1974).

    ADS  Google Scholar 

  9. J. Ford, Phys. Rep. 213, 271 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. N. J. Zabusky, Chaos 15, 015102 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. A. Porter, N. J. Zabusky, B. Hu, and D. K. Campbell, Am. Sci. 97, 214 (2009).

    Article  Google Scholar 

  12. G. van Simaeys, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 87, 033902 (2001); J. Opt. Soc. Am. B 19, 477 (2002).

    Article  ADS  Google Scholar 

  13. A. Mussot, A. Kudlinski, M. Droques, P. Szriftgiser, and N. Akhmediev, Phys. Rev. X 4, 011054 (2014)

    Google Scholar 

  14. O. Kimmoun et al., Sci. Rep. 6, 28516 (2016).

    Article  ADS  Google Scholar 

  15. D. K. Campbell, S. Flash, and Yu. S. Kivshar, Phys. Today 43 (2004)

  16. S. Flash, M. V. Ivanchenko, and O. I. Kanakov, Phys. Rev. Lett. 95, 064102 (2005); Phys. Rev. E 73, 036618 (2006)

    Article  ADS  Google Scholar 

  17. M. Onorato, L. Vozellaa, D. Proment, and Yu. V. Lvov, Proc. Natl. Acad. Sci. 112, 4208 (2015).

    Article  ADS  Google Scholar 

  18. V. E. Zakharov and E. A. Kuznetsov, Phys. Usp. 40, 1087 (1997).

    Article  ADS  Google Scholar 

  19. A. Hasegawa and F. Tappet, Appl. Phys. Lett. 23, 142 (1973).

    Article  ADS  Google Scholar 

  20. T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).

    Article  ADS  Google Scholar 

  21. V. E. Zakharov and L. A. Ostrovsky, Physica D 238, 540 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  22. E. A. Kuznetsov and M. D. Spector, Theor. Math. Phys. 120, 997 (1999).

    Article  Google Scholar 

  23. E. A. Kuznetsov, M. D. Spector, and G. E. Falkovich, Physica D 100, 379 (1984).

    Article  ADS  Google Scholar 

  24. E. A. Kuznetsov, Sov. Phys. Dokl. 22, 507 (1977).

    ADS  Google Scholar 

  25. D. H. Peregrine, J. Austral. Math. Soc., Ser. B 25, 16 (1983)

    Article  MathSciNet  Google Scholar 

  26. N. Akhmediev, V. Eleonsky, and N. Kulagin, Sov. Phys. JETP 62, 894 (1985)

    Google Scholar 

  27. V. E. Zakharov and A. A. Gelash, Phys. Rev. Lett. 111, 054101 (2013).

    Article  ADS  Google Scholar 

  28. D. S. Agafontsev and V. E. Zakharov, Nonlinearity 28, 2791 (2015). arXiv:1512.06332 (2016); Nonlinearity (in press).

    Article  ADS  MathSciNet  Google Scholar 

  29. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, Cambridge, 1996), Vol.2.

  30. E. A. Kuznetsov and A. V. Mikhailov, Sov. Phys. JETP 40, 855 (1974).

    ADS  Google Scholar 

  31. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 8, 226 (1974), Funct. Anal. Appl. 13, 166 (1979).

    Article  Google Scholar 

  32. S. P. Novikov, S. V. Manakov, L. P. Pitaevsky, and V. E. Zakharov, Theory of Solitons (Consultants Bureau, New York, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kuznetsov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, E.A. Fermi–Pasta–Ulam recurrence and modulation instability. Jetp Lett. 105, 125–129 (2017). https://doi.org/10.1134/S0021364017020023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017020023

Navigation