Skip to main content
Log in

Self-propagating crystallization waves in the TiCu amorphous alloy

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Self-propagating crystallization waves are detected and experimentally demonstrated in the Ti50Cu50 amorphous alloy obtained by the melt spinning (ultrafast quenching) method. High-speed thermographic recording has shown that crystallization waves can appear spontaneously at the heating of an amorphous strip to 300–350°С or at the local initiation by a hot tungsten coil of a small segment of the strip preliminarily heated to 230–250°С. In the former case, the crystallization wave propagates at a velocity of ~7 cm/s; in the latter case, the crystallization wave propagates in a self-oscillation mode at an average velocity of ~1.2 cm/s. The temperature gradient across the wavefront is about 150°С. The samples crystallized in the self-oscillation mode have a characteristic banded structure with a smaller grain in depression regions. The crystallization product in all samples is the TiCu tetragonal intermetallic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gore, London, Edinburg, Dublin Philos. Mag. J. Sci. 9, 73 (1855).

    Google Scholar 

  2. A. Götzberger, Zeitschr. Phys. 142, 182 (1955).

    Article  ADS  Google Scholar 

  3. H. J. Leamy, W. L. Brown, G. K. Celler, G. Foti, and G. H. Gilmer, Appl. Phys. Lett. 38, 137 (1981).

    Article  ADS  Google Scholar 

  4. S. Hayashi, Y. Fujita, T. Kamikura, K. Sakaike, M. Akazawa, M. Ikeda, and S. Higashi, Jpn. J. Appl. Phys. 52, 05EE02 (2013).

  5. K. Ohdaira, T. Fujiwara, Y. Endo, S. Nishizaki, and H. Matsumura, J. Appl. Phys. 106, 044904 (2009).

    Article  ADS  Google Scholar 

  6. K. Ohdaira, Thin Solid Films 575, 21 (2015).

    Article  ADS  Google Scholar 

  7. V. A. Shklovskii and V. M. Kuz’menko, Sov. Phys. Usp. 32, 163 (1989).

    Article  ADS  Google Scholar 

  8. L. N. Aleksandrov and F. L. Edelman, Phys. Status Solidi A 76, 409 (1983).

    Article  ADS  Google Scholar 

  9. V. G. Myagkov, L. E. Bykova, G. N. Bondarenko, V. S. Zhigalov, A. I. Pol’ski, and F. V. Myagkov, JETP Lett. 71, 183 (2000).

    Article  ADS  Google Scholar 

  10. S. M. Zharkov, E. T. Moiseenko, R. R. Altunin, N. S. Nikolaeva, V. S. Zhigalov, and V. G. Myagkov, JETP Lett. 99, 405 (2014).

    Article  ADS  Google Scholar 

  11. C. Buchner and W. Schneider, J. Appl. Phys. 117, 245301 (2015).

    Article  ADS  Google Scholar 

  12. W. Klement, Jr., R. H. Willens, and P. Duwez, Nature 187, 869 (1960).

    Article  ADS  Google Scholar 

  13. Amorphous Metallic Alloys, Ed. by F. T. Luborsky (Butterworths, London, Boston, Durban, Singapore, Sydney, Toronto, Wellington, 1983).

  14. W. L. Johnson, Curr. Opin. Solid State Mater. Sci. 1, 383 (1996).

    Article  ADS  Google Scholar 

  15. Yu. K. Kovneristyi, Metalloved. Termich. Obrab. Met. 7 (601), 14 (2005).

    Google Scholar 

  16. W. L. Johnson and J. Plummer, Nat. Mater. 14, 553 (2015).

    Article  Google Scholar 

  17. U. Köster, J. Meinhardt, A. Aronin, and Y. Biron, Z. Metallkd. 86, 171 (1995).

  18. R. Jain, N. S. Saxena, D. Bhandari, S. K. Sharma, and K. V. R. Rao, Physica B 301, 341 (2001).

    Article  ADS  Google Scholar 

  19. A. Pratap, K. N. Lad, T. L. Shanker Rao, P. Majmudar, and N. S. Saxena, J. Non-Cryst. Solids 345–346, 178 (2004).

    Article  Google Scholar 

  20. T. L. Shanker Rao, K. N. Lad, and A. Pratap, J. Therm. Anal. Calorim. 78, 769 (2004).

    Article  Google Scholar 

  21. F. Pratap, T. L. Shanker Rao, K. N. Lad, and H. D. Dhurandhar, J. Non-Cryst. Solids 353, 2346 (2007).

    Article  ADS  Google Scholar 

  22. G. E. Abrosimova, A. S. Aronin, A. F. Gurov, Yu. V. Kir’yanov, and V. V. Molokanov, Phys. Solid State 41, 1027 (1999).

    Article  ADS  Google Scholar 

  23. S. Vauth and S. G. Mayr, Appl. Phys. Lett. 86, 061913 (2005).

    Article  ADS  Google Scholar 

  24. S. S. Dalgic and M. Celtec, J. Optoelectron. Adv. Mater. 13, 1563 (2011).

    Google Scholar 

  25. T. P. Weihs, in Metallic Films for Electronic, Magnetic, Optical, and Thermal Applications: Structure, Processing, and Properties, Ed. by K. Barmak and K. R. Coffey (Woodhead, Swaston, UK, 2014), Ch. 6, p. 160.

  26. A. S. Rogachev, Russ. Chem. Rev. 77, 21 (2008).

    Article  ADS  Google Scholar 

  27. A. S. Rogachev, S. G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N. V. Sachkova, M. D. Grapes, T. P. Weihs, and A. S. Mukasyan, Combust. Flame 166, 158 (2016).

    Article  Google Scholar 

  28. H. J. Leamy, W. L. Brown, G. K. Celler, G. Foti, G. H. Gilmer, and J. C. C. Fan, Appl. Phys. Lett. 38, 137 (1981).

    Article  ADS  Google Scholar 

  29. M. O. Tompson, G. L. Galvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson, A. G. Cullis, and N. G. Chew, Phys. Rev. Lett. 52, 2360 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Rogachev.

Additional information

Original Russian Text © A.S. Rogachev, S.G. Vadchenko, A.S. Shchukin, I.D. Kovalev, A.S. Aronin, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 10, pp. 740–744.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogachev, A.S., Vadchenko, S.G., Shchukin, A.S. et al. Self-propagating crystallization waves in the TiCu amorphous alloy. Jetp Lett. 104, 726–729 (2016). https://doi.org/10.1134/S0021364016220124

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016220124

Navigation