Skip to main content
Log in

Study of non-isothermal crystallization of amorphous Cu50Ti50 alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization kinetics of amorphous Cu50Ti50 has been studied using differential scanning calorimetry (DSC) under non-isothermal conditions. The curves at different linear heating rates (2, 4, 8 and 16 K min−1) show sharp crystallization peaks. The crystallization peak shifts to higher temperatures with increasing heating rate. The Kissinger’s method of analysis of the shift in the transformation peak is applied to evaluate the activation energy (E c). The KJMA formalism, which is basically developed for isothermal experiments, is also used to obtain E c and the Avrami parameter (n).

The DSC data have been analysed in terms of kinetic parameters, viz. activation energy (E c), Avrami exponent (n) and frequency factor K 0 using three different theoretical models. It is observed that the activation energy values derived from KJMA approach and modified Kissinger equation agree fairly well with each other. The activation energy values obtained from normal Kissinger method, and Gao and Wang expression underestimate the activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Suñol, M. T. Clavaguera-Mora and N. Clavaguera, J. Therm. Anal. Cal., 70 (2002) 173.

    Google Scholar 

  2. J. J. Suñol, M. T. Clavaguera-Mora and N. Clavaguera, J. Therm. Anal. Cal., 72 (2003) 347.

    Google Scholar 

  3. A. N. Kolmogorov, Bull. Acad. Sci. USSR, Phys. Ser. 1 (1937) 355.

    Google Scholar 

  4. W. A. Johnson and P. A. Mehl, Trans. Inst. Min. Metall. Pet. Eng., 135 (1939) 416.

    Google Scholar 

  5. M. Avrami, J. Chem. Phys., 7 (1939) 1103.

    Google Scholar 

  6. M. Avrami, J. Chem. Phys., 8 (1940) 212.

    Google Scholar 

  7. M. Avrami, J. Chem. Phys., 9 (1941) 177.

    Google Scholar 

  8. D. W. Henderson, J. Non-Cryst. Solids, 30 (1979) 301.

    Google Scholar 

  9. J. Malek, Thermochim. Acta, 355 (2000) 239.

    Google Scholar 

  10. H. E. Kissinger, Anal. Chem., 29 (1957) 1702.

    Google Scholar 

  11. K. Matusita and S. Sakka, Phys. Chem. Glasses, 20 (1979) 77.

    Google Scholar 

  12. Y. Q. Gao and W. Wang, J. Non-Cryst. Solids, 87 (1986) 129.

    Google Scholar 

  13. K. Chrissafis, J. Therm. Anal. Cal., 73 (2003) 745.

    Article  Google Scholar 

  14. U. Koster, J. Meinhardt, A. Aronin and Y. Biron, Z. Metallkunde, 86 (1995) 171.

    Google Scholar 

  15. W. F. Miao, J. T. Wang, S. L. Li and F. Z. Ding, J. Non-Cryst. Solids, 117/118 (1990) 230.

    Google Scholar 

  16. A. Pratap, K. N. Lad, T. L. Shanker Rao, P. Majmudar and N. S. Saxena, Presented at ‘10th International Conference on Physics of Non- Crystalline Solids’, Parma, Italy, June 2003 and to appear in J. Non-Cryst. Solids, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pratap.

Additional information

The financial support provided by All India Council for Technical Education (AICTE), New Delhi (Govt. of India) is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanker Rao, T.L., Lad, K.N. & Pratap, A. Study of non-isothermal crystallization of amorphous Cu50Ti50 alloy. J Therm Anal Calorim 78, 769–774 (2004). https://doi.org/10.1007/s10973-005-0444-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-0444-0

Keywords

Navigation