Skip to main content
Log in

Magnetostructural phase transitions in NiO and MnO: Neutron diffraction data

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Structural and magnetic phase transitions in NiO and MnO antiferromagnets have been studied by high-precision neutron diffraction. The experiments have been performed on a high-resolution Fourier diffractometer (pulsed reactor IBR-2), which has the record resolution for the interplanar distance and a high intensity in the region of large interplanar distances; as a result, the characteristics of both transitions have been determined simultaneously. It has been shown that the structural and magnetic transitions in MnO occur synchronously and their temperatures coincide within the experimental errors: T strT mag ≈ (119 ± 1) K. The measurements for NiO have been performed with powders with different average sizes of crystallites (~1500 nm and ~138 nm). It has been found that the transition temperatures differ by ~50 K: T str = (471 ± 3) K, T mag = (523 ± 2) K. It has been argued that a unified mechanism of the “unsplit” magnetic and structural phase transition at a temperature of T mag is implemented in MnO and NiO. Deviation from this scenario in the behavior of NiO is explained by the quantitative difference—a weak coupling between the magnetic and secondary structural order parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Shull and J. S. Smart, Phys. Rev. 76, 1256 (1949).

    Article  ADS  Google Scholar 

  2. H. P. Rooksby, Nature 152, 304 (1943).

    Article  ADS  Google Scholar 

  3. B. T. M. Willis and H. P. Rooksby, Acta Crystallogr. 6, 827 (1953).

    Article  Google Scholar 

  4. W. L. Roth, Phys. Rev. 110, 1333 (1958).

    Article  ADS  Google Scholar 

  5. D. Ter Haar and M. E. Lines, Phil. Trans. R. Soc. London A 254, 521 (1962), Phil. Trans. R. Soc. London A 255, 1 (1962).

    Article  ADS  Google Scholar 

  6. P. W. Anderson, in Solid State Physics: Advances in Research and Applications, Vol. 14, Ed. by F. Seitz and D. Turnbull (Academic, New York, London, 1963).

  7. A. Schrön, C. Rödl, and F. Bechstedt, Phys. Rev. B 86, 115134 (2012).

    Article  ADS  Google Scholar 

  8. M. Hutchings and E. Samuelsen, Phys. Rev. B 6, 3447 (1972).

    Article  ADS  Google Scholar 

  9. D. Köddeitzsch, W. Hergert, W. M. Temmerman, Z. Szotek, A. Ernst, and H. Winter, Phys. Rev. B 66, 064434 (2002).

    Article  ADS  Google Scholar 

  10. G. Pepy, J. Phys. Chem. Sol. 35, 433 (1974).

    Article  ADS  Google Scholar 

  11. I. Solovyev and K. Terakura, Phys. Rev. 58, 15496 (1998).

    Article  Google Scholar 

  12. M. E. Lines and E. D. Jones, Phys. Rev. A 139, 1313 (1965).

    Article  ADS  Google Scholar 

  13. M. E. Lines, Phys. Rep. 55, 133 (1979).

    Article  ADS  Google Scholar 

  14. T. Yildirim, A. B. Harris, and E. F. Shender, Phys. Rev. B 58, 3144 (1998).

    Article  ADS  Google Scholar 

  15. A. N. Ignatenko, A. A. Katanin, and V. Yu. Irkhin, JETP Lett. 87, 555 (2008).

    Article  ADS  Google Scholar 

  16. J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, J. Phys. (France) 41, 1263 (1980).

    Article  MathSciNet  Google Scholar 

  17. A. P. Kantor, L. S. Dubrovinsky, N. A. Dubrovinskaia, I. Yu. Kantor, and I. N. Goncharenko, J. Alloys Compd. 402, 42 (2005).

    Article  Google Scholar 

  18. H. P. Rooksby, Acta Crystallogr. 1, 226 (1948).

    Article  Google Scholar 

  19. L. C. Bartel and B. Morosin, Phys. Rev. B 3, 1039 (1971).

    Article  ADS  Google Scholar 

  20. A. J. Springthorpe, Phys. Status Solidi 24, K3 (1967).

    Article  ADS  Google Scholar 

  21. M. W. Vernon, Phys. Status Solidi 37, K1 (1970).

    Article  ADS  Google Scholar 

  22. G. Srinivasan and M. S. Seehra, Phys. Rev. B 29, 6295 (1984).

    Article  ADS  Google Scholar 

  23. T. Chatterji, G. J. McIntyre, and P.-A. Lindgard, Phys. Rev. B 79, 172403 (2009).

    Article  ADS  Google Scholar 

  24. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, J. Phys.: Conf. Ser. 93, 172403 (2007).

    Google Scholar 

  25. A. M. Balagurov, Neutron News 16, 8 (2005).

    Article  Google Scholar 

  26. V. B. Zlokazov and V. V. Chernyshev, J. Appl. Crystallogr. 25, 447 (1992).

    Article  Google Scholar 

  27. J. Rodriguez-Carvajal, Physica B 192, 55 (1993).

    Article  ADS  Google Scholar 

  28. M. A. Carpenter, Z. Zhang, and Ch. J. Howard, J. Phys.: Condens. Matter 24, 156002 (2012).

    ADS  Google Scholar 

  29. Z. Zhang, N. Church, S.-Ch. Lappe, M. Reinecker, A. Fuith, P. J. Saines, R. J. Harrison, W. Schranz, and M. A. Carpenter, J. Phys.: Condens. Matter 24, 215404 (2012).

    ADS  Google Scholar 

  30. E. K. Salje and M. A. Carpenter, J. Phys.: Condens. Matter 23, 462202 (2011).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Balagurov.

Additional information

Original Russian Text © A.M. Balagurov, I.A. Bobrikov, S.V. Sumnikov, V.Yu. Yushankhai, N. Mironova-Ulmane, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 2, pp. 84–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balagurov, A.M., Bobrikov, I.A., Sumnikov, S.V. et al. Magnetostructural phase transitions in NiO and MnO: Neutron diffraction data. Jetp Lett. 104, 88–93 (2016). https://doi.org/10.1134/S0021364016140071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016140071

Navigation