Skip to main content
Log in

Pade spectroscopy of structural correlation functions: Application to liquid gallium

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We propose the new method of fluid structure investigation based on numerical analytic continuation of structural correlation functions with Pade approximants. The method particularly allows extracting hidden structural features of disordered condensed matter systems from experimental diffraction data. The method has been applied to investigate the local order of liquid gallium, which has a non-trivial structure in both the liquid and solid states. Processing the correlation functions obtained from molecular dynamic simulations, we show the method proposed reveals non-trivial structural features of liquid gallium such as the spectrum of length-scales and the existence of different types of local clusters in the liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill, New York, 1980).

    Google Scholar 

  2. A. H. Narten, J. Chem. Phys. 56, 5681 (1972).

    Article  ADS  Google Scholar 

  3. Y. Waseda and K. Suzuki, Phys. Status Solidi B 49, 339 (1972).

    Article  ADS  Google Scholar 

  4. A. Lyapin, E. Gromnitskaya, O. Yagafarov, O. Stalgorova, and V. Brazhkin, J. Exp. Theor. Phys. 107, 818 (2008).

    Article  ADS  Google Scholar 

  5. O. F. Yagafarov, Y. Katayama, V. V. Brazhkin, A. G. Lyapin, and H. Saitoh, Phys. Rev. B 86, 174103 (2012).

    Article  ADS  Google Scholar 

  6. A. F. Wells, Structural Inorganic Chemistry (Oxford Univ. Press, Oxford, 2012).

    Google Scholar 

  7. O. Schulte and W. B. Holzapfel, Phys. Rev. B 55, 8122 (1997).

    Article  ADS  Google Scholar 

  8. T. Kenichi, K. Kazuaki, and A. Masao, Phys. Rev. B 58, 2482 (1998).

    Article  ADS  Google Scholar 

  9. S.-F. Tsay and S. Wang, Phys. Rev. B 50, 108 (1994).

    Article  ADS  Google Scholar 

  10. X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, Europhys. Lett. 21, 469 (1993).

    Article  ADS  Google Scholar 

  11. J. Yang, J. S. Tse, and T. Iitaka, J. Chem. Phys. 135, 044507 (2011).

    Article  ADS  Google Scholar 

  12. K. H. Tsai, T.-M. Wu, and S.-F. Tsay, J. Chem. Phys. 132, 034502 (2010).

    Article  ADS  Google Scholar 

  13. D. K. Belashchenko, Phys. Usp. 56, 1176 (2013).

    Article  ADS  Google Scholar 

  14. D. Belashchenko, Russ. J. Phys. Chem. A 86, 779 (2012).

    Article  Google Scholar 

  15. A. Mokshin, R. Khusnutdinoff, A. Novikov, N. Blagoveshensky, and A. Puchkov, J. Exp. Theor. Phys. 121, 828 (2015).

    Article  ADS  Google Scholar 

  16. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975).

    MATH  Google Scholar 

  17. H. Vidberg and J. Serene, J. Low Temp. Phys. 29, 179 (1977).

    Article  ADS  Google Scholar 

  18. H. Yamada and K. Ikeda, Eur. Phys. J. B 87, 1 (2014).

    Article  MathSciNet  Google Scholar 

  19. J. Schött, I. L. Locht, E. Lundin, O. Grånäs, O. Eriksson, and I. Marco, Eur. Phys. J. B (2015).

    Google Scholar 

  20. S. H. Krishnan and K. G. Ayappa, J. Chem. Phys. 118, 690 (2003).

    Article  ADS  Google Scholar 

  21. N. Chtchelkatchev and R. Ryltsev, Pis’ma Zh. Eksp. Teor. Fiz. 102, 732 (2015).

    Google Scholar 

  22. S. Dyachenko, P. Lushnikov, and A. Korotkevich, JETP Lett. 98, 675 (2014).

    Article  ADS  Google Scholar 

  23. G. A. Baker and P. R. Graves-Morris, Padé Approximants, Vol. 59 of Encyclopedia of Mathematics and Its Applications (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  24. http://mathworld.wolfram.com/PadeApproximant.html

  25. www.jetpletters.ac.ru.

  26. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids: With Applications to Soft Matter (Academic, Amsterdam, 2013).

    MATH  Google Scholar 

  27. X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, Phys. Rev. B 43, 14277 (1991).

    Article  ADS  Google Scholar 

  28. R. E. Ryltsev and N. M. Chtchelkatchev, Phys. Rev. E 88, 052101 (2013).

    Article  ADS  Google Scholar 

  29. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

    Article  ADS  Google Scholar 

  30. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. Lett. 47, 1297 (1981).

    Article  ADS  Google Scholar 

  31. J. R. Errington, J. Chem. Phys. 118, 2256 (2003).

    Article  ADS  Google Scholar 

  32. P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932 (1996).

    Article  ADS  Google Scholar 

  33. B. Klumov, JETP Lett. 97, 327 (2013).

    Article  ADS  Google Scholar 

  34. M. D. Rintoul and S. Torquato, J. Chem. Phys. 105, 9258 (1996).

    Article  ADS  Google Scholar 

  35. B. A. Klumov, S. A. Khrapak, and G. E. Morfill, Phys. Rev. B 83, 184105 (2011).

    Article  ADS  Google Scholar 

  36. U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Science 292, 258 (2001).

    Article  ADS  Google Scholar 

  37. M. Rubin-Zuzic, G. E. Morfill, A. V. Ivlev, R. Pompl, B. A. Klumov, W. Bunk, H. M. Thomas, H. Rothermel, O. Havnes, and A. Fouquát, Nature Phys. 2, 181 (2006).

    Article  ADS  Google Scholar 

  38. B. A. Klumov, Phys. Usp. 53, 1053 (2010).

    Article  ADS  Google Scholar 

  39. S. A. Khrapak, B. A. Klumov, P. Huber, V. I. Molotkov, A. M. Lipaev, V. N. Naumkin, H. M. Thomas, A. V. Ivlev, G. E. Morfill, O. F. Petrov, V. E. Fortov, Y. Malentschenko, and S. Volkov, Phys. Rev. Lett. 106, 205001 (2011).

    Article  ADS  Google Scholar 

  40. A. Hirata, L. J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A. R. Yavari, and M. W. Chen, Science 341, 376 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Chtchelkatchev.

Additional information

The article is published in the original. See the supplemental material for this paper at www.jetpletters.ac.ru.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chtchelkatchev, N.M., Klumov, B.A., Ryltsev, R.E. et al. Pade spectroscopy of structural correlation functions: Application to liquid gallium. Jetp Lett. 103, 390–394 (2016). https://doi.org/10.1134/S0021364016060035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016060035

Navigation