Skip to main content
Log in

Giant red shift of the absorption spectra due to nonstoichiometry in GdCoO3–δ

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The GdCoO3–δ perovskite is a semiconductor with the energy gap E g ≈ 0.5 eV from electrical transport measurements. It reveals unusual optical absorption spectra without transparency window expected for semiconductors. Instead we have measured the narrow transmittance peak at the photon energy ε0 = 0.087 eV. To reconcile the transport and optical data we have studied the effect of oxygen vacancies on the electronic structure of the GdCoO3–δ. We have found that oxygen vacancies result in the in-gap states inside the charge-transfer energy gap of the GdCoO3. It is a multielectron effect due to strong electron correlations forming the electronic structure of the GdCoO3–δ. These in-gap states decrease the transparency window and result in a narrow absorption minimum. The predicted temperature dependence of the absorption spectra has been confirmed by our measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Maekawa, T. Tohyama, S. E. Barnes, S. Ishihara, W. Koshibae, and G. Khaliullin, Physics of Transition Metal Oxides (Springer, Berlin, 2004).

    Book  Google Scholar 

  2. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).

    Article  ADS  Google Scholar 

  3. S. R. Giblin, I. Terry, S. J. Clark, T. Prokscha, D. Prabhakaran, A. T. Boothroyd, J. Wu, and C. Leighton, Europhys. Lett. 70, 677 (2005).

    Article  ADS  Google Scholar 

  4. C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Grüninger, T. Lorenz, P. Reutler, and A. Revcolevschi, Phys. Rev. B 66, 020402 (2002).

    Article  ADS  Google Scholar 

  5. T. Kyomen, Y. Asaka, and M. Itoh, Phys. Rev. B 67, 144424 (2003).

    Article  ADS  Google Scholar 

  6. J.-Q. Yan, J.-S. Zhou, and J. B. Goodenough, Phys. Rev. B 69, 134409 (2004).

    Article  ADS  Google Scholar 

  7. M. Magnuson, S. M. Butorin, C. Sathe, and J. Nordgren, Europhys. Lett. 68, 289 (2004).

    Article  ADS  Google Scholar 

  8. S. Stolen, F. Gronvold, H. Brinks, T. Atake, and H. Mori, Phys. Rev. B 55, 14103 (1997).

    Article  ADS  Google Scholar 

  9. S. Noguchi, S. Kawamata, K. Okuda, H. Nojiri, and M. Motokawa, Phys. Rev. B 66, 094404 (2002).

    Article  ADS  Google Scholar 

  10. M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 97, 176405 (2006).

    Article  ADS  Google Scholar 

  11. K. Knizek, Z. Jirak, J. Hejtmanek, M. Veverka, M. Marysko, G. Maris, and T. T. M. Palstra, Eur. Phys. J. B 47, 213 (2005).

    Article  ADS  Google Scholar 

  12. S. G. Ovchinnikov, Yu. S. Orlov, and V. A. Dudnikov, J. Magn. Magn. Mater. 324, 3584 (2012).

    Article  ADS  Google Scholar 

  13. Yu. S. Orlov et al., Phys. Rev. B 88, 235105 (2013).

    Article  ADS  Google Scholar 

  14. S. Yamaguchi, Y. Okimoto, and Y. Tokura, Phys. Rev. B 54, R11022 (1996).

    Article  ADS  Google Scholar 

  15. B. Scherrer, A. S. Harvey, S. Tanasescu, F. Teodorescu, A. Botea, K. Conder, A. N. Grundy, J. Martynczuk, and L. J. Gauckler, Phys. Rev. B 84, 085113 (2011).

    Article  ADS  Google Scholar 

  16. M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, Z. V. Pchelkina, I. A. Nekrasov, M. A. Korotin, and V. I. Anisimov, J. Exp. Theor. Phys. 99, 559 (2004).

    Article  ADS  Google Scholar 

  17. M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, I. A. Nekrasov, Z. V. Pchelkina, and V. I. Anisimov, Phys. Rev. B 72, 165104 (2005).

    Article  ADS  Google Scholar 

  18. V. A. Gavrichkov, S. G. Ovchinnikov, I. A. Nekrasov, and Z. V. Pchelkina, J. Exp. Theor. Phys. 112, 860 (2011).

    Article  ADS  Google Scholar 

  19. S. G. Ovchinnikov, Yu. S. Orlov, I. A. Nekrasov, and Z. V. Pchelkina, J. Exp. Theor. Phys. 112, 140 (2011).

    Article  ADS  Google Scholar 

  20. K. Conder, E. Pomjakushina, A. Soldatov, and E. Mitberg, Mater. Res. Bull. 40, 257 (2005).

    Article  Google Scholar 

  21. Y. Kim, D. H. Lee, T. Y. Kwon, and S. H. Park, J. Solid State Chem. 112, 376 (1994).

    Article  ADS  Google Scholar 

  22. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  23. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  25. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).

    Article  ADS  Google Scholar 

  26. G. Kresse and J. Furthmüller, Comp. Mat. Sci. 6, 15 (1996).

    Article  Google Scholar 

  27. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  28. G. Kresse, M. Marsman, and J. Furthmüller, VASP—Vienna Ab initio Simulation Package. http://cmsmpiunivieacat/vasp.

  29. A. Togo, L. Chaput, I Tanaka, and G. Hug, Phys. Rev. B 81, 174301 (2010).

    Article  ADS  Google Scholar 

  30. A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).

    Article  ADS  Google Scholar 

  31. A. Togo, http://phonopysourceforgenet.

  32. P. Ravindran, P. A. Korzhavyi, H. Fjellvag, and A. Kjekshus, Phys. Rev. B 60, 16423 (1999).

    Article  ADS  Google Scholar 

  33. S. G. Ovchinnikov, V. A. Gavrichkov, M. M. Korshunov, and E. I. Shneyder, Springer Ser. Solid-State Sci. 171, 143 (2012).

    Article  Google Scholar 

  34. Yu. S. Orlov and S. G. Ovchinnikov, J. Exp. Theor. Phys. 109, 322 (2009).

    Article  ADS  Google Scholar 

  35. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    Article  ADS  Google Scholar 

  36. L. F. Feiner, J. H. Jefferson, and R. Raimondi, Phys. Rev. B 53, 8751 (1996).

    Article  ADS  Google Scholar 

  37. V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B 71, 125119 (2005).

    Article  ADS  Google Scholar 

  38. S. G. Ovchinnikov, Sov. Phys. JETP 75, 283 (1992).

    Google Scholar 

  39. S. G. Ovchinnikov, Phys. Usp. 40, 993 (1997).

    Article  ADS  Google Scholar 

  40. J. Zaanen and G. A. Sawatzky, J. Solid State Chem. 88, 8 (1990).

    Article  ADS  Google Scholar 

  41. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Orlov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, S.G., Orlov, Y.S., Kuzubov, A.A. et al. Giant red shift of the absorption spectra due to nonstoichiometry in GdCoO3–δ . Jetp Lett. 103, 161–166 (2016). https://doi.org/10.1134/S0021364016030115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016030115

Keywords

Navigation