Skip to main content
Log in

High rotatable magnetic anisotropy in epitaxial L10CoPt(111) thin films

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The evolution of the structural and magnetic properties in epitaxial film systems Co/Pt(111) of equiatomic composition during vacuum annealing has been presented. Annealing to the temperature of 400°C does not lead to the variation of the structural and magnetic properties of the films, which indicates the absence of considerable mixing of the Co/Pt interface. With the increase in the annealing temperature from 400 to 750°C, nanoclusters containing the main magnetically hard L10CoPt(111) phase epitaxially intergrown with the CoPt3 phase are formed. High rotatable magnetic anisotropy has been found in the prepared films. In magnetic fields above the coercive force (H > H C = 8 kOe), the easy anisotropy axis with the angle of lag taken into account can be oriented in any spatial direction. Possible mechanisms of the formation of the rotatable magnetic anisotropy have been discussed. It has been assumed that the high rotatable magnetic anisotropy makes the main contribution to the magnetic perpendicular anisotropy in Co x Pt1–x films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000)

    Article  ADS  Google Scholar 

  2. O. Gutfleisch, J. Lyubina, K.-H. Müller, and L. Schultz, Adv. Eng. Mater. 7, 208 (2005).

    Article  Google Scholar 

  3. S. D. Bader, Rev. Mod. Phys. 78, 1 (2006)

    Article  ADS  Google Scholar 

  4. P. Andreazza, V. Pierron-Bohnes, F. Tournus, C. Andreazza-Vignolle, and V. Dupuis, Surf. Sci. Rep. 70, 188 (2015)

    Article  ADS  Google Scholar 

  5. S. Sun, Adv. Mater. 18, 393 (2006).

    Article  Google Scholar 

  6. B. M. Lairson, M. R. Visokay, E. E. Marinero, R. Sinclair, and B. M. Clemens, J. Appl. Phys. 74, 1922 (1993)

    Article  ADS  Google Scholar 

  7. N. Yasui, A. Imada, and T. Den, Appl. Phys. Lett. 83, 3347 (2003)

    Article  ADS  Google Scholar 

  8. O. Ersen, V. Parasote, V. Pierron-Bohnes, M. C. Cadeville, and C. Ulhaq-Bouillet, J. Appl. Phys. 93, 2987 (2003)

    Article  ADS  Google Scholar 

  9. L. Reichel, S. Fahler, L. Schultz, and K. Leistner, J. Appl. Phys. 114, 093909 (2013).

    Article  ADS  Google Scholar 

  10. G. Lauhoff, Y. Yamada, Y. Itoh, and T. Suzuki, J. Magn. Soc. Jpn. Suppl. SI, 43 (1999)

    Google Scholar 

  11. S. C. Chen, P. C. Kuo, C. L. Shen, S. L. Hsu, and T. H. Sun, Mater. Des. 31, 1706 (2010)

    Article  Google Scholar 

  12. K. K. M. Pandey, J. S. Chen, T. Liu, C. J. Sun, and G. M. Chow, J. Phys. D: Appl. Phys. 42, 185007 (2009)

    Article  ADS  Google Scholar 

  13. Y. S. Chen, A.-C. Sun, H. Y. Lee, H.-C. Lu, S.-F. Wang, and P. Sharma, J. Magn. Magn. Mater. 391, 12 (2015).

    Article  ADS  Google Scholar 

  14. A.-C. Sun, C.-F. Huang, and S. H. Huang, J. Appl. Phys. 115, 17B720 (2014)

    Article  Google Scholar 

  15. F.-T. Yuan, J.-H. Hsu, Y.-H. Lin, S. N. Hsiao, and H. Y. Lee, J. Appl. Phys. 111, 07A303 (2012)

    Google Scholar 

  16. F.-T. Yuan, A.-C. Sun, C. F. Huang, and J.-H. Hsu, Nanotechnology 25, 165601 (2014)

    Article  ADS  Google Scholar 

  17. D. Suzuki, M. Ohtake, F. Kirino, and M. Futamoto, J. Appl. Phys. 115, 17C120 (2014).

    Article  Google Scholar 

  18. J. O. Cross, M. Newville, B. B. Maranville, C. Bordel, F. Hellman, and V. G. Harris, J. Phys.: Condens. Matter 22, 146002 (2010)

    ADS  Google Scholar 

  19. J.-J. Wang, T. Sakurai, K. Oikawa, K. Ishida, N. Kikuchi, S. Okamoto, H. Sato, T. Shimatsu, and O. Kitakami, J. Phys.: Condens. Matter 21, 185008 (2009)

    ADS  Google Scholar 

  20. J. O. Cross, M. Newville, B. B. Maranville, C. Bordel, F. Hellman, and V. G. Harris, J. Phys.: Condens. Matter 22, 146002 (2010)

    ADS  Google Scholar 

  21. J.-J. Wang, T. Sakurai, K. Oikawa, K. Ishida, N. Kikuchi, S. Okamoto, H. Sato, T. Shimatsu, and O. Kitakami, J. Phys.: Condens. Matter 22, 146002 (2010).

    Google Scholar 

  22. Y. Yamada, T. Suzuki, H. Kanazawa, and J. C. Osterman, J. Appl. Phys. 85, 5094 (1999).

    Article  ADS  Google Scholar 

  23. W. Rooney, A. L. Shapiro, M. Q. Tran, and F. Hellman, Phys. Rev. Lett. 75, 1843 (1995)

    Article  ADS  Google Scholar 

  24. F. Liscio, M. Maret, C. Meneghini, S. Mobilio, O. Proux, D. Makarov, and M. Albrecht, Phys. Rev. B 81, 125417 (2010)

    Article  ADS  Google Scholar 

  25. J. O. Cross, M. Newville, B. B. Maranville, C. Bordel, F. Hellman, and V. G. Harris, J. Phys.: Condens. Matter 22, 146002 (2010).

    ADS  Google Scholar 

  26. D. Weller, H. Brändle, G. Gorman, C.-J. Lin, and H. Notarys, Appl. Phys. Lett. 61, 2726 (1992)

  27. C.-Y. Tsai, P. Saravanan, J.-H. Hsu, C.-Y. Kuo, and K.-F. Lin, J. Magn. Magn. Mater. 361, 7 (2014)

    Article  ADS  Google Scholar 

  28. H. An, J. Wang, T. Sannomiya, S. Muraishi, Y. Nakamura, and J. Shi, J. Phys. D: Appl. Phys. 48, 155001 (2015)

    Article  ADS  Google Scholar 

  29. F. T. Yuan, H. W. Chang, P. Y. Lee, C. Y. Chang, C. C. Chi, and H. Ouyang, J. Alloys. Compd. 628, 263 (2015).

    Article  Google Scholar 

  30. R. F. Soohoo, Magnetic Thin Films (Harper and Row, London, 1965).

    Google Scholar 

  31. G. Chai, N. N. Phuoc, and C. K. Ong, Appl. Phys. Lett. 103, 042412 (2013).

    Article  ADS  Google Scholar 

  32. S. Tacchi, S. Fin, G. Carlotti, G. Gubbiotti, M. Madami, M. Barturen, M. Marangolo, M. Eddrief, D. Bisero, A. Rettori, and M. G. Pini, Phys. Rev. 89, 024411 (2014)

    Article  ADS  Google Scholar 

  33. G. Wang, C. Dong, W. Wang, Z. Wang, G. Chai, C. Jiang, and D. Xue, J. Appl. Phys. 112, 093907 (2012).

    Article  ADS  Google Scholar 

  34. W. J. Fan, X. P. Qiu, Z. Shi, S. M. Zhou, and Z. H. Cheng, Thin Solid Films 518, 2175 (2010)

    Article  ADS  Google Scholar 

  35. J. S. Park, J. Wu, E. Arenholz, M. Liberati, A. Scholl, Y. Meng, C. Hwang, and Z. Q. Qiu, Appl. Phys. Lett. 97, 042505 (2010)

    Article  ADS  Google Scholar 

  36. G. Chai, N. N. Phuoc, and C. K. Ong, Sci. Rep. 2, 832 (2012).

    Article  ADS  Google Scholar 

  37. X. Liu and G. Zangari, J. Appl. Phys. 90, 5247 (2001)

    Article  ADS  Google Scholar 

  38. M. L. Schneider, A. B. Kos, and T. J. Silva, Appl. Phys. Lett. 86, 202503 (2005).

    Article  ADS  Google Scholar 

  39. M. J. O’Shea, K. M. Lee, and A. Fert, J. Appl. Phys. 67, 5769 (1990).

    Article  ADS  Google Scholar 

  40. V. G. Myagkov, V. S. Zhigalov, L. E. Bykova, G. N. Bondarenko, Yu. L. Mikhlin, G. S. Patrin, and D. A. Velikanov, Phys. Status Solidi B 249, 1541 (2012).

    Article  ADS  Google Scholar 

  41. K. H. Ahn and S. Baika, J. Mater. Res. 17, 2334 (2002).

    Article  ADS  Google Scholar 

  42. G. Varvaro, E. Agostinelli, S. Laureti, A. M. Testa, A. Generosi, B. Paci, and V. R. Albertini, IEEE Trans. Magn. 44, 643 (2008).

    Article  ADS  Google Scholar 

  43. S. H. Liou, S. Huang, and E. Klimek, J. Appl. Phys. 85, 4334 (1999).

    Article  ADS  Google Scholar 

  44. S.-E. Park, P.-Y. Jung, and K.-B. Kim, J. Appl. Phys. 77, 2641 (1995).

    Article  ADS  Google Scholar 

  45. C. Leroux, A. Loiseau, D. Broddin, and G. Vantendeloo, Philos. Mag. B 64, 57 (1991)

    Article  ADS  Google Scholar 

  46. Y. le Bouar, A. Loiseau, and A. G. Khachaturyan, Acta Mater. 46, 2777 (1998)

    Article  Google Scholar 

  47. Y. Ni and A. G. Khachaturyan, Nature Mater. 8, 410 (2009).

    Article  ADS  Google Scholar 

  48. M. A. Steiner, R. B. Comes, J. A. Floro, W. A. Soffa, and J. M. Fitz-Gerald, Acta Mater. 85, 261 (2015).

    Article  Google Scholar 

  49. P. Ghatwai, E. Vetter, M. Hrdy, W. A. Soffa, and J. A. Floro, J. Magn. Magn. Mater. 375, 87 (2015).

    Article  ADS  Google Scholar 

  50. M. E. Gruner, G. Rollmann, P. Entel, and M. Farle, Phys. Rev. Lett. 100, 087203 (2008).

    Article  ADS  Google Scholar 

  51. F. Tournus, K. Sato, T. Epicier, T. J. Konno, and V. Dupuis, Phys. Rev. Lett. 110, 055501 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Myagkov.

Additional information

Original Russian Text © V.G. Myagkov, V.S. Zhigalov, L.E. Bykova, G.N. Bondarenko, A.N. Rybakova, A.A. Matsynin, I.A. Tambasov, M.N. Volochaev, D.A. Velikanov, 2015, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheckoi Fiziki, 2015, Vol. 102, No. 6, pp. 393–398.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myagkov, V.G., Zhigalov, V.S., Bykova, L.E. et al. High rotatable magnetic anisotropy in epitaxial L10CoPt(111) thin films. Jetp Lett. 102, 355–360 (2015). https://doi.org/10.1134/S0021364015180101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015180101

Keywords

Navigation