Skip to main content
Log in

Structural Features and Magnetic Properties of Co–W Films

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure and magnetic properties of thin polycrystalline films of Co100 – xWx (0 ≤ x ≤ 30) deposited by magnetron sputtering on glass substrates are investigated including those containing buffer layers of Ta, W, and Ru. It is found that films of pure Co are non-single-phase and contain hcp and fcc crystalline modifications. Doping leads to an increase in the concentration of the fcc phase and an enhancement of the texture of the (111) type, and subsequently to the amorphization of the films. The buffer layers influence to a certain extent on the depth and concentration localization of these transformations. A characteristic feature of the magnetism of Co–W films is a significant perpendicular component in the macroscopic magnetic anisotropy, which leads to a “supercritical” magnetic state. It is shown that its source is the textured fcc phase, the crystalline anisotropy of which is enhanced as a result of doping of cobalt with tungsten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. N. Piramanayagam, J. Appl. Phys. 102, 011301 (2007).

    Article  ADS  Google Scholar 

  2. Ultra-High-Density Magnetic Recording: Storage Materials and Media Designs, Ed. by G. Vavaro and F. Casoli (CRC, Boca Raton, 2016).

    Google Scholar 

  3. L. Saharan, C. Morrison, Y. Ikeda, K. Takano, J. J. Miles, T. Thomson, T. Schref, and G. Hrkac, Appl. Phys. Lett. 102, 142402 (2013).

    Article  ADS  Google Scholar 

  4. R. H. Krider, Ann. Rev. Mater. Sci. 23, 411 (1993).

    Article  ADS  Google Scholar 

  5. K. Oikawa, G. W. Qin, M. Sato, O. Kitakami, and Y. Shimada, Appl. Phys. Lett. 83, 966 (2003).

    Article  ADS  Google Scholar 

  6. D. Z. Grabco, I. A. Dikusa, V. I. Petrenko, E. E. Harea, and O. A. Shikimaka, Surf. Eng. Appl. Electrochem. 43, 11 (2007).

    Article  Google Scholar 

  7. D. A. Dugato, J. Brandão, R. L. Seeger, F. Béron, J. C. Cezar, L. S. Dorneles, and T. J. A. Mori, Appl. Phys. Lett. 115, 182408 (2019).

    Article  ADS  Google Scholar 

  8. T. R. Gao, Y. Q. Wu, S. Fackler, I. Kierzewski, Y. Zhang, A. Mehta, M. J. Kramer, and I. Takeuchi, Appl. Phys. Lett. 102, 022419 (2013).

    Article  ADS  Google Scholar 

  9. V. O. Vas’kovskii, A. N. Gor’kovenko, O. A. Adanakova, A. V. Svalov, N. A. Kulesh, E. A. Stepanova, E. V. Kudyukov, and V. N. Lepalovskii, Phys. Met. Metallogr. 120, 1055 (2019).

    Article  ADS  Google Scholar 

  10. A. Kashyap, P. Manchanda, P. K. Sahota, R. Skomski, J. E. Shield, and D. J. Sellmyer, IEEE Trans. Magn. 47, 3336 (2011).

    Article  ADS  Google Scholar 

  11. K. Oikawa, G. W. Qin, M. Sato, S. Okamoto, O. Kitakami, and Y. Shimada, Appl. Phys. Lett. 85, 2559 (2003).

    Article  ADS  Google Scholar 

  12. R. Jérome, T. Valet, and P. Galtier, IEEE Trans. Magn. 30, 4878 (1994).

    Article  ADS  Google Scholar 

  13. V. O. Vas’kovskiy, V. N. Lepalovskii, A. N. Gor’kovenko, N. A. Kulesh, P. A. Savin, A. V. Svalov, E. A. Stepanova, N. N. Shchegoleva, and A. A. Yuvchenko, Tech. Phys. 60, 116 (2015).

    Article  Google Scholar 

  14. S. Gangopadhyay, J. X. Shen, M. T. Kief, J. A. Barnard, and M. R. Parker, IEEE Trans. Magn. 31, 3933 (1995).

    Article  ADS  Google Scholar 

  15. R. Coehoorn, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (North Holland, Amsterdam, 1999).

    Google Scholar 

  16. N. S. Bannikova, M. A. Milyaev, L. I. Naumova, E. I. Patrakov, V. V. Proglyado, I. Yu. Kamenskii, M. V. Ryabukhina, and V. V. Ustinov, Phys. Met. Metallogr. 119, 1073 (2018).

    Article  ADS  Google Scholar 

  17. M. Farle, Rep. Prog. Phys. 61, 755 (1998).

    Article  ADS  Google Scholar 

  18. A. G. Lesnik, Induced Magnetic Anisotropy in Polycrystalline Films (Naukova Dumka, Kiev, 1976) [in Russian].

    Google Scholar 

  19. N. M. Salanskii and M. Sh. Erukhimov, Physical Properties and Applications of Thin Films (Nauka, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  20. V. O. Vas’kovskii, P. A. Savin, S. O. Volchkov, V. N. Le-palovskii, D. A. Bukreev, and A. A. Buchkevich, Tech. Phys. 58, 105 (2013).

    Article  Google Scholar 

  21. E. A. Mikhalitsyna, V. A. Kataev, A. Larrañaga, V. N. Lepalovskij, and A. P. Turygin, J. Magn. Magn. Mater. 415, 61 (2016).

    Article  ADS  Google Scholar 

  22. S. R. Herd, J. Appl. Phys. 50, 1645 (1979).

    Article  ADS  Google Scholar 

  23. S. Q. Yin, Y. Wu, X. G. Xu, H. Wang, J. P. Wang, and Y. Jiang, AIP Adv. 4, 127156 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.S. Bolyachkin, M.E. Moskalev, and V.V. Popov for their help in organizing the work and for participating in the discussion of the results.

Funding

This work was carried out with support by the Ministry of Science and Higher Education of the Russian Federation, topic no. FEUZ-2020-0051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Feshchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vas’kovskiy, V.O., Volochaev, M.N., Gorkovenko, A.N. et al. Structural Features and Magnetic Properties of Co–W Films. Phys. Solid State 63, 1113–1119 (2021). https://doi.org/10.1134/S1063783421070246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421070246

Keywords:

Navigation