Skip to main content
Log in

IceCube astrophysical neutrinos without a spectral cutoff and 1015–1017 eV cosmic gamma radiation

  • Astrophysics and Cosmology
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We present a range of unbroken power-law fits to the astrophysical-neutrino spectrum consistent with the most recent published IceCube data at the 68% confidence level. Assuming that the neutrinos originate in decays of π mesons, we estimate accompanying gamma-ray fluxes for various distributions of sources, taking propagation effects into account. We then briefly discuss existing experimental results constraining PeV to EeV diffuse gamma-ray flux and their systematic uncertainties. Several scenarios are marginally consistent both with the KASKADE and CASA-MIA upper limits at 10152–1016 eV and with the EAS-MSU tentative detection at ∼1017 eV, given large systematic errors of the measurements. Future searches for the diffuse gamma-ray background at sub-PeV to sub-EeV energies just below present upper limits will give a crucial diagnostic tool for distinguishing between the Galactic and extragalactic models of the origin of the IceCube events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Aartsen et al. (IceCube Collab.), Phys. Rev. Lett. 111, 021103 (2013); arXiv:1304.5356 [astro-ph.HE].

    Article  ADS  Google Scholar 

  2. M. G. Aartsen et al. (IceCube Collab.), Science 342(6161), 1242856 (2013); arXiv:1311.5238 [astroph.HE].

    Article  Google Scholar 

  3. M. G. Aartsen et al. (IceCube Collab.), Phys. Rev. Lett. 113, 101101 (2014); arXiv:1405.5303 [astro-ph.HE].

    Article  ADS  Google Scholar 

  4. L. A. Anchordoqui, V. Barger, I. Cholis, H. Goldberg, D. Hooper, A. Kusenko, J. G. Learned, and D. Marfatia, J. High Energy Astrophys., Nos. 1–2, 1 (2014) arXiv:1312.6587 [astro-ph.HE].

    Google Scholar 

  5. V. Barger, L. Fu, J. G. Learned, D. Marfatia, S. Pakvasa, and T. J. Weiler arXiv:1407.3255 [astro-ph.HE].

  6. N. Gupta, Astropart. Phys. 48, 75 (2013); arXiv:1305.4123 [astro-ph.HE].

    Article  ADS  Google Scholar 

  7. L. A. Anchordoqui, H. Goldberg, M. H. Lynch, A. V. Olinto, T. C. Paul, and T. J. Weiler, Phys. Rev. D 89, 083003 (2014); arXiv:1306.5021 [astro-ph.HE].

    Article  ADS  Google Scholar 

  8. M. Ahlers and K. Murase, Phys. Rev. D 90, 023010 (2014); arXiv:1309.4077 [astro-ph.HE].

    Article  ADS  Google Scholar 

  9. K. Murase, M. Ahlers, and B. C. Lacki, Phys. Rev. D 88, 121301 (2013); arXiv:1306.3417 [astro-ph.HE].

    Article  ADS  Google Scholar 

  10. J. C. Joshi, W. Winter, and N. Gupta arXiv:1310.5123 [astro-ph.HE].

  11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).

    Google Scholar 

  12. M. G. Aartsen et al. (IceCube Collab.), J. Instrum. 9, P03009 (2014); arXiv:1311.4767 [physics.ins-det].

    Article  Google Scholar 

  13. L. A. Anchordoqui, H. Goldberg, F. Halzen, and T. J. Weiler, Phys. Lett. B 600, 202 (2004); astroph/0404387.

    Article  ADS  Google Scholar 

  14. S. Lee, Phys. Rev. D 58, 043004 (1998); astroph/9604098.

    Article  ADS  Google Scholar 

  15. O. E. Kalashev, V. A. Kuzmin, and D. V. Semikoz, astro-ph/9911035.

  16. O. E. Kalashev and E. Kido arXiv:1406.0735 [astroph.HE].

  17. T. M. Kneiske, K. Mannheim, and D. H. Hartman, Astron. Astrophys. 386, 1 (2002); T. M. Kneiske, T. Bretz, K. Mannheim, and D. H. Hartman, Astron. Astrophys. 413, 807 (2004).

    Article  ADS  Google Scholar 

  18. M. Juric et al. (SDSS Collab.), Astrophys. J. 673, 864 (2008); astro-ph/0510520.

    Article  ADS  Google Scholar 

  19. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 462, 563 (1996); astro-ph/9508025.

    Article  ADS  Google Scholar 

  20. A. Klypin, H. Zhao, and R. S. Somerville, Astrophys. J. 573, 597 (2002); astro-ph/0110390.

    Article  ADS  Google Scholar 

  21. A. M. Taylor, S. Gabici, and F. Aharonian, Phys. Rev. D 89, 103003 (2014); arXiv:1403.3206 [astro-ph.HE].

    Article  ADS  Google Scholar 

  22. A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, and M. Galeazzi, Astrophys. J. 756, L8 (2012); arXiv:1205.5037 [astro-ph.HE].

    Article  ADS  Google Scholar 

  23. A. H. Maller and J. S. Bullock, Mon. Not. R. Astron. Soc. 355, 694 (2004); astro-ph/0406632.

    Article  ADS  Google Scholar 

  24. M. Aglietta et al. (EAS-TOP Collab.), Astropart. Phys. 6, 71 (1996).

    Article  ADS  Google Scholar 

  25. M. C. Chantell et al. (CASA-MIA Collab.), Phys. Rev. Lett. 79, 1805 (1997); astro-ph/9705246.

    Article  ADS  Google Scholar 

  26. G. Schatz et al. (KASCADE Collab.), in Proceedings of the 28th International Cosmic Ray Conference ICRC 2003, Tsukuba, Japan, July 31–August 7, 2003, Ed. by T. Kajita, Yo. Asaoka, A. Kawachi, M. Sasaki, and Y. Matsubara (Univ. Academy Press, Tokyo, Japan, 2003), Vol. 4, p. 2293.

  27. J. Alvarez-Muniz, M. Risse, G. I. Rubtsov, B. T. Stokes (for the Pierre Auger, Telescope Array, Yakutsk Collab.), EPJ Web Conf. 53, 01009 (2013); arXiv:1306.4199 [astro-ph.HE].

    Article  Google Scholar 

  28. Yu. A. Fomin, N. N. Kalmykov, G. V. Kulikov, V. P. Sulakov, and S. V. Troitsky, J. Exp. Theor. Phys. 117, 1011 (2013); arXiv:1307.4988 [astro-ph.HE].

    Article  Google Scholar 

  29. Yu. A. Fomin, N. N. Kalmykov, G. V. Kulikov, V. P. Sulakov, and S. V. Troitsky, Pis’ma Zh. Eksp. Teor. Fiz. 100, 797 (2014).

    Google Scholar 

  30. W. Winter, arXiv:1407.7536 [astro-ph.HE].

  31. S. Ogio et al. (Telescope Array Collab.), Talk at the International Symposium on Future Directions in UHECR Physics, CERN, February 13–16, 2012.

  32. A. Etchegoyen (Pierre Auger Collab.), arXiv:0710.1646 [astro-ph].

  33. M. Tluczykont, D. Hampf, U. Einhaus, D. Horns, M. Bruckner, N. Budnev, M. Buker, and O. Chvalaev, AIP Conf. Proc. 1505, 821 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Troitsky.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashev, O., Troitsky, S. IceCube astrophysical neutrinos without a spectral cutoff and 1015–1017 eV cosmic gamma radiation. Jetp Lett. 100, 761–765 (2015). https://doi.org/10.1134/S0021364014240072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014240072

Keywords

Navigation