Skip to main content
Log in

Optical detection in a ferromagnet

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The detection of plane-polarized amplitude-modulated infrared laser radiation in a transparent yttrium-iron garnet ferromagnet at room temperature is performed experimentally. The nonlinear interaction mechanism is suggested. It is found that the magnitude and sign of the detected signal depend significantly on the magnetizing external magnetic field. The signal is observed when the magnetization of the ferromagnet approaches the saturated value. The measured dependence of the amplitude of the detected signal on the angle of polarization of the laser radiation with respect to the magnetization of the ferromagnetic sample supports the suggested nonlinearity mechanism. The largest nonlinearity appears when the magnetic field of the plane-polarized laser radiation is parallel to the magnetic moment of the magnetized ferromagnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. M. Yakovlev and S. Sh. Gendelev, Single Crystals of Ferrites in Radio Electronics (Sovetskoe Radio, Moscow, 1975) [in Russian].

    Google Scholar 

  2. S. Chikazumi, Physics of Ferromagnetism (Oxford Univ. Press, Oxford, 1997; Mir, Moscow, 1987).

    Google Scholar 

  3. N. Bloembergen and R. W. Damon, Phys. Rev. 85, 699 (1952).

    Article  ADS  Google Scholar 

  4. Ferrites in Nonlinear SHF-Devices, Collection of Articles, Ed. by A. G. Gurevich (Inostr. Liter., Moscow, 1961) [in Russian].

    Google Scholar 

  5. Nonlinear Properties of Ferrites in SHF Fields, Collection of Articles, Ed. by A. L. Mikaelian (Inostr. Liter., Moscow, 1963).

    Google Scholar 

  6. G. S. Krinchik and M. V. Chetkin, Sov. Phys. Usp. 12, 307 (1969).

    Article  ADS  Google Scholar 

  7. A. F. Kabychenkov, Sov. Phys. JETP 73, 672 (1991).

    Google Scholar 

  8. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, Nature 435, 655 (2005).

    Article  ADS  Google Scholar 

  9. W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, Jpn. J. Appl. Phys. 42, 981 (2003).

    Article  ADS  Google Scholar 

  10. B. Koopmans, M. van Kampen, J. T. Kohlheppand, and W. J. M. de Jonge, Phys. Rev. Lett. 85, 844 (2000).

    Article  ADS  Google Scholar 

  11. A. Kirilyuk, J. Sci. Arts 3, 353 (2011).

    Google Scholar 

  12. A. V. Kimel, A. Kirilyuk, F. Hansteen, R. V. Pisarev, and Th. Rasing, J. Phys.: Condens. Matter 19, 043201 (2007).

    ADS  Google Scholar 

  13. A. V. Kimel, F. Bentivegna, V. N. Gridnev, V. V. Pavlov, R. V. Pisarev, and Th. Rasing, Phys. Rev. B 63, 123520 (2001).

    Article  Google Scholar 

  14. A. O. Makaryan, Molod. Nauchn. Sotrudn. EGU 2, 134 (1982).

    Google Scholar 

  15. F. Hansteen, A. V. Kimel, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 73, 014421 (2006).

    Article  ADS  Google Scholar 

  16. J. Wang, C. Sun, Y. Hashimoto, J. Kono, G. A. Khodaparast, L. Cywinski, L. J. Sham, G. D. Sanders, C. J. Stanton, and H. Munekata, J. Phys.: Condens. Matter 18, R501 (2006).

    ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2005; Pergamon, New York, 1984).

    Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Fizmatlit, Moscow, 2004; Pergamon, New York, 1980).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).

    MATH  Google Scholar 

  21. F. Bloch, Phys. Rev. 70, 460 (1946).

    Article  ADS  Google Scholar 

  22. T. L. Gilbert, Phys. Rev. 100, 1243 (1955).

    Google Scholar 

  23. H. B. Callen, J. Phys. Chem. Solids 4, 256 (1958).

    Article  ADS  Google Scholar 

  24. N. Bloembergen, Phys. Rev. 78, 572 (1950).

    Article  ADS  Google Scholar 

  25. V. M. Mekhitarian, J. Contemp. Phys. (Arm. Acad. Sci.) 47, 249 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Makaryan.

Additional information

Original Russian Text © R.M. Martirosian, A.H. Makaryan, V.M. Mekhitarian, V.R. Tadevosyan, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 99, No. 8, pp. 505–510.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martirosian, R.M., Makaryan, A.H., Mekhitarian, V.M. et al. Optical detection in a ferromagnet. Jetp Lett. 99, 435–440 (2014). https://doi.org/10.1134/S0021364014080098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014080098

Keywords

Navigation