Skip to main content
Log in

Thermal vacancies in one-dimensional Xe adsorbate chains in grooves of nanotube bundles

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The specific heat C P of quasi-one-dimensional Xe adsorbate chains in grooves on the outer surface of closed single-walled carbon nanotube bundles in the temperature interval of 2–55 K has been measured. Experimental data have been compared to the theoretical C V values. The sharp increase in the difference C P C V above 30 K has been explained within the model of formation of single thermal vacancies in the one-dimensional Xe adsorbate chains. The enthalpy, entropy, and concentration of thermal vacancies have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Bagatskii, V. G. Manzhelii, V. V. Sumarokov, and M. S. Barabashko, Low Temp Phys. 39, 618 (2013).

    Article  ADS  Google Scholar 

  2. M. I. Bagatskii, M. S. Barabashko, and V. V. Sumarokov, Low Temp. Phys. 39, 441 (2013).

    Article  ADS  Google Scholar 

  3. P. Kowalczyk, P. A. Gauden, and A. P. Terzyk, J. Phys. Chem. B 112, 8275 (2008).

    Article  Google Scholar 

  4. G. Garberoglio and J. K. Johnson, ACS Nano 4, 1703 (2010).

    Article  Google Scholar 

  5. Y. H. Kahng, R. B. Hallock, and E. Dujardin, Phys. Rev. B 83, 115434 (2011).

    Article  ADS  Google Scholar 

  6. E. V. Manzhelii, I. A. Gospodarev, S. B. Feodosyev, and N. V. Godovanaja, in Proceedings of the 9th International Conference on Cryocrystals and Quantum Crystals CC2012 (Odessa, Ukraine, 2012), p. 63.

    Google Scholar 

  7. M. V. Kharlamova, Phys. Usp. 56, 1047 (2013).

    Article  ADS  Google Scholar 

  8. T. N. Antsygina, I. I. Poltavsky, K. A. Chishko, T. A. Wilson, and O. E. Vilches, Low Temp. Phys. 31, 1007 (2005).

    Article  ADS  Google Scholar 

  9. A. V. Eletskii, Phys. Usp. 47, 1119 (2004).

    Article  ADS  Google Scholar 

  10. T. N. Antsygina, I. I. Poltavsky, and K. A. Chishko, Phys. Rev. B 74, 205429 (2006).

    Article  ADS  Google Scholar 

  11. K. Percus, Mol. Phys. 100, 2417 (2002).

    Article  ADS  Google Scholar 

  12. A. Šiber, Phys. Rev. B 66, 235414 (2002).

    Article  ADS  Google Scholar 

  13. L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 627 (1937).

    Google Scholar 

  14. J. M. Phillips and J. G. Dash, J. Stat. Phys. 120, 721 (2005).

    Article  ADS  MATH  Google Scholar 

  15. M. I. Bagatskii, V. V. Sumarokov, and A. V. Dolbin, Low Temp. Phys. 37, 424 (2011).

    Article  ADS  Google Scholar 

  16. A. V. Dolbin, V. B. Esel’son, V. G. Gavrilko, V. G. Manzhelii, N. A. Vinnikov, S. N. Popov, and B. Sundqvist, Low Temp. Phys. 34, 678 (2008).

    Article  ADS  Google Scholar 

  17. M. I. Bagatskii, M. S. Barabashko, A. V. Dolbin, and V. V. Sumarokov, Low Temp. Phys. 38, 523 (2012).

    Article  ADS  Google Scholar 

  18. A. V. Dolbin, V. B. Esel’son, V. G. Gavrilko, V. G. Manzhelii, N. A. Vinnikov, S. N. Popov, N. I. Danilenko, and B. Sundqvist, Low Temp. Phys. 35, 484 (2009).

    Article  ADS  Google Scholar 

  19. T. N. Antsygina, I. I. Poltavsky, and K. A. Chishko, J. Low Temp. Phys. 148, 821 (2007).

    Article  ADS  Google Scholar 

  20. S. M. Gatica, M. J. Bojan, G. Stan, and M. W. Cole, J. Chem. Phys. 114, 3765 (2001).

    Article  ADS  Google Scholar 

  21. S. M. Gatica, M. M. Calbi, R. D. Diehl, and M. W. Cole, J. Low Temp. Phys. 152, 89 (2008).

    Article  ADS  Google Scholar 

  22. A. D. Lueking and M. W. Cole, Phys. Rev. B 75, 195425 (2007).

    Article  ADS  Google Scholar 

  23. A. J. Zambano, S. Talapatra, and A. D. Migone, Phys. Rev. B 64, 075415 (2001).

    Article  ADS  Google Scholar 

  24. H. Ulbricht, J. Kriebel, G. Moos, and T. Hertel, Chem. Phys. Lett. 363, 252 (2002).

    Article  ADS  Google Scholar 

  25. S. Talapatra and A. D. Migone, Phys. Rev. Lett. 87, 206106 (2001).

    Article  ADS  Google Scholar 

  26. S. Talapatra, V. Krungleviciute, and A. D. Migone, Phys. Rev. Lett. 89, 246106 (2002).

    Article  ADS  Google Scholar 

  27. M. K. Kostov, M. M. Calbi, and M. W. Cole, Phys. Rev. B 68, 245403 (2003).

    Article  ADS  Google Scholar 

  28. Rare Gas Solids, Ed. by M. L. Klein and J. A. Venables (Academic, London, New York, San Francisco, 1977), Vol. 2, p. 1252.

    Google Scholar 

  29. P. R. Granfors, A. T. Macrander, and R. O. Simmons, Phys. Rev. B 24, 4753 (1981).

    Article  ADS  Google Scholar 

  30. V. G. Manzhelii, A. I. Prokhvatilov, I. Ya. Minchina, and L. D. Yantsevich, in Handbook of Binary Solutions of Cryocrystals (Begell House, New York, Wallingford, UK, 1996), p. 236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Bagatskii.

Additional information

Original Russian Text © M.I. Bagatskii, M.S. Barabashko, V.V. Sumarokov, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 99, No. 8, pp. 532–536.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagatskii, M.I., Barabashko, M.S. & Sumarokov, V.V. Thermal vacancies in one-dimensional Xe adsorbate chains in grooves of nanotube bundles. Jetp Lett. 99, 461–465 (2014). https://doi.org/10.1134/S0021364014080049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014080049

Keywords

Navigation