Skip to main content

The Heat Capacity of Nanotube Bundles with 1D Chains of Gas Adsorbates

  • Conference paper
  • First Online:
Nanotechnology in the Security Systems

Abstract

The heat capacity of 1D chains of Xe adsorbed in the outer grooves of bundles of closed single-walled carbon nanotubes (c-SWNTs) have been investigated in the temperature range 2–85 K. The experimental results of heat capacity are close to the theoretical calculation below 8 K. Above 8 K the experimental curve exceeds the theoretical one and excess increases monotonously with temperature. It was assumed that the sharp increase of the difference between the experimental and theoretical curves of heat capacity above 30 K is associated with the occurrence of the thermally created vacancies in the chains due to spatial redistribution of the xenon atoms. The molar enthalpy of vacancy formation in the chain has been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kowalczyk P, Gauden PA, Terzyk AP (2008) Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores. J Phys Chem B 112:8275

    Article  Google Scholar 

  2. Wang Q, Challa SR, Sholl DS, Johnson JK (1999) Quantum sieving in carbon nanotubes and zeolites. Phys Rev Lett 82:956

    Article  ADS  Google Scholar 

  3. Challa SR, Sholl D, Johnson JK (2001) Light isotope separation in carbon nanotubes through quantum molecular sieving. Phys Rev B 63:245419

    Article  ADS  Google Scholar 

  4. Hattori Y, Tanaka H, Okino F, Touhara H, Nakahigashi Y, Utsumi S, Kanoh H, Kaneko K (2006) Quantum sieving effect of modified activated carbon fibers on H2 and D2 adsorption at 20 K. J Phys Chem B 110:9764

    Article  Google Scholar 

  5. Tanaka H, Fan J, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2005) Quantum nature of adsorbed hydrogen on single-wall carbon nanohorns. Mol Simul 31:465

    Article  Google Scholar 

  6. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuaeria GE, Tomanek D, Fisher JE, Smalley R (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483

    Article  ADS  Google Scholar 

  7. Stan G, Cole MW (1998) Low coverage adsorption in cylindrical pores. Surf Sci 395:280

    Article  ADS  Google Scholar 

  8. Šiber A, Buljan H (2002) Quantum states and specific heat of low-density He gas adsorbed within carbon nanotube interstitial channels: band-structure effects and potential dependence. Phys Rev B 66:075415

    Article  ADS  Google Scholar 

  9. Šiber A (2002) Adsorption of He atoms in external grooves of single-wall carbon nanotube bundles. Phys Rev B 66:205406

    Article  ADS  Google Scholar 

  10. Gatica SM, Bojan MJ, Stan G, Cole MW (2001) Quasi-one- and two-dimensional transitions of gases adsorbed on nanotube bundles. J Chem Phys 114:3765

    Article  ADS  Google Scholar 

  11. Šiber A (2002) Phonons and specific heat of linear dense phases of atoms physisorbed in the grooves of carbon nanotube bundles. Phys Rev B 66:235414

    Article  ADS  Google Scholar 

  12. Stan G, Bojan MJ, Curtarolo S, Gatica SM, Cole MW (2000) Uptake of gases in bundles of carbon nanotubes. Phys Rev B 62:2173

    Article  ADS  Google Scholar 

  13. Kostov MK, Calbi MM, Cole MW (2003) Phonons and specific heat of neon and methane on the surface of a nanotube bundle. Phys Rev B 68:245403

    Article  ADS  Google Scholar 

  14. Bagatskii MI, Barabashko MS, Dolbin AV, Sumarokov VV (2012) The specific heat and the radial thermal expansion of bundles of single-walled carbon nanotubes. Fiz Nizk Temp 38:667 (Low Temp Phys 38:523 (2012))

    Google Scholar 

  15. Bagatskii MI, Barabashko MS, Sumarokov VV (2013) The heat capacity of nitrogen chain in grooves of single-walled carbon nanotube bundles. Fiz Nizk Temp 39:568 (Low Temp Phys 39:441 (2013))

    Google Scholar 

  16. Bagatskii MI, Manzhelii VG, Sumarokov VV, Barabashko MS (2013) Experimental low-temperature heat capacity of one-dimensional xenon adsorbate chains in the grooves of carbon c-SWNT bundles. Fiz Nizk Temp 39:801 (Low Temp Phys 39:618 (2013))

    Google Scholar 

  17. Bagatskii MI, Sumarokov VV, Dolbin AV (2011) A simple low-temperature adiabatic calorimeter for small samples. Fiz Nizk Temp 37:535 (Low Temp Phys 37:424 (2011))

    Google Scholar 

  18. Dolbin AV, Esel’son VB, Gavrilko VG, Manzhelii VG, Vinnikov NA, Popov SN, Sundqvist B (2008) Radial thermal expansion of single-walled carbon nanotube bundles at low temperatures. Fiz Nizk Temp 34:860 (Low Temp Phys 34:678 (2008))

    Google Scholar 

  19. Danilchenko BA, Tripachko NA, Voytsihovska EA, Sundqvist B (2011) Self-heating of metallic carbon nanotube bundles in the regime of the Luttinger-liquid conductivity. Fiz Nizk Temp 37:892 (Low Temp Phys 37:710 (2011))

    Google Scholar 

  20. Ding F, Harutyunyan AR, Yakobson BI (2009) Dislocation theory of chirality-controlled nanotube growth. Proc Nat Acad Sci (USA) 106:2506

    Article  ADS  Google Scholar 

  21. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204

    Article  ADS  Google Scholar 

  22. Anilkumar P, Fernando KAS, Cao L, Lu F, Song FYW, Sahu S, Qian H, Thorne TJ, Anderson A, Sun Y-P (2011) Noncovalent interactions of derivatized pyrenes with metallic and semiconducting single-walled carbon nanotubes. J Phys Chem C 115:11010

    Article  Google Scholar 

  23. Lu J, Nagase S, Zhang X, Wang D, Ni M, Maeda Y, Wakahara T, Nakahodo T, Tsuchiya T, Akasaka T, Gao Z, Yu D, Ye H, Mei WN, Zhou Y (2006) Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: critical role of the molecular size and orientation. J Am Chem Soc 128:5114

    Article  Google Scholar 

  24. Kozinsky B, Marzari N (2006) Static dielectric properties of carbon nanotubes from first principles. Phys Rev Lett 96:166801

    Article  ADS  Google Scholar 

  25. Lu W, Wang D, Chen L (2007) Near-static dielectric polarization of individual carbon nanotubes. Nano Lett 7:2729

    Article  ADS  Google Scholar 

  26. Chen D-L, Mandeltort L, Saidi WA, Yates JT, Cole MW Jr, Johnson JK (2013) Is there a difference in Van Der Waals Interactions between rare gas atoms adsorbed on metallic and semiconducting single-walled carbon nanotubes? Phys Rev Lett 110:135503

    Article  ADS  Google Scholar 

  27. Hone J, Llagono MC, Biercuk MG, Jonson AT, Batlogg B, Benes Z, Ficher GE (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A 74:339

    Article  ADS  Google Scholar 

  28. Mizel A, Benedict LX, Cohen ML, Louie SG, Zettl A, Budraa NK, Beyermann WP (1999) Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes. Phys Rev B 60:3264

    Article  ADS  Google Scholar 

  29. Hone J, Batlogg B, Benes Z, Johnson AT, Fischer JE (2000) Quantized phonon spectrum of single-wall carbon nanotubes. Science 289:1730

    Article  ADS  Google Scholar 

  30. Lasjaunias JC, Biljakovi K, Benes Z, Fischer JE, Monceau P (2002) Low-temperature specific heat of single-wall carbon nanotubes. Phys Rev B 65:113409

    Article  ADS  Google Scholar 

  31. Lasjaunias JC, Biljakovi K, Monceau P, Sauvajol JL (2003) Low-energy vibrational excitations in carbon nanotubes studied by heat capacity. Nanotechnology 14:998

    Article  ADS  Google Scholar 

  32. Talapatra S, Zambano AZ, Weber SE, Migone AD (2000) Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles. Phys Rev Lett 85:138

    Article  ADS  Google Scholar 

  33. Zambano AJ, Talapatra S, Migone AD (2001) Binding energy and monolayer capacity of Xe on single-wall carbon nanotube bundles. Phys Rev B 64:075415

    Article  ADS  Google Scholar 

  34. Ulbricht H, Kriebel J, Moos G, Hertel T (2002) Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles. Chem Phys Lett 363:252

    Article  ADS  Google Scholar 

  35. Cvitaš MT, Šiber AA (2003) Vibrations of a chain of Xe atoms in a groove in a carbon nanotube bundle. Phys Rev B 67:193401

    Article  ADS  Google Scholar 

  36. Manzhelii EV, Gospodarev IA, Feodosyev SB, Godovanaja NV (2012) The atomic dynamics of linear nanostructures in crystal matrices. Book of abstracts 9th international conference of cryocrystals and quantum crystals, CC-2012, Odessa, p 63

    Google Scholar 

  37. Talapatra S, Migone AD (2001) Existence of novel quasi-one-dimensional phases of atoms adsorbed on the exterior surface of close-ended single wall nanotube bundles. Phys Rev Lett 87:206106

    Article  ADS  Google Scholar 

  38. Talapatra S, Krungleviciute V, Migone AD (2002) Higher coverage gas adsorption on the surface of carbon nanotubes: evidence for a possible new phase in the second layer. Phys Rev Lett 89:246106

    Article  ADS  Google Scholar 

  39. Antsygina TN, Poltavsky II, Chishko KA (2006) Thermodynamics of low-dimensional adsorption in grooves, on the outer surface, and in interstitials of a closed-ended carbon nanotube bundle. Phys Rev B 74:205429

    Article  ADS  Google Scholar 

  40. Antsygina TN, Poltavsky II, Chishko KA (2007) Exactly solved model for 4He adsorption on carbon nanotube bundles. J Low Temp Phys 148:821

    Article  ADS  Google Scholar 

  41. Antsygina TN, Poltavsky II, Chishko KA (2005) Dynamics and thermodynamics of quasi-one-dimensional helium deposited on carbon nanobundles. J Low Temp Phys 138:223

    Article  ADS  Google Scholar 

  42. Klein ML, Venables JA (eds) (1977) Rare Gas Solids, vol 2. Academic, London/New York/San Francisco, 1252p

    Google Scholar 

  43. Granfors PR, Macrander AT, Simmons RO (1981) Crystalline xenon: Lattice parameters, thermal expansion, thermal vacancies, and equation of state. Phys Rev B 24:4753

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Barabashko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Barabashko, M.S., Bagatskii, M.I., Sumarokov, V.V. (2015). The Heat Capacity of Nanotube Bundles with 1D Chains of Gas Adsorbates. In: Bonča, J., Kruchinin, S. (eds) Nanotechnology in the Security Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9005-5_11

Download citation

Publish with us

Policies and ethics