Skip to main content
Log in

Electronic band structure, Fermi surface, structural and elastic properties of two polymorphs of MgFeSeO as possible new superconducting systems

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

By means of DFT-based ab initio calculations, we examine two polymorphs of the newly synthesized 1111-like MgFeSeO as possible new superconducting systems. We have found that the polymorph with blocks [MgO], where Mg atoms are placed in the centers of O4 tetrahedra, is dynamically unstable unlike the ZrCu-SiAs-type polymorph with oxygen atoms placed in the centers of Mg4 tetrahedra. The characterization of this material covers the structural, elastic properties, electronic band structure, density of electronic states, and Fermi surface. Our calculations suggest that a high critical temperature for MgFeSeO may be achieved as a result of electron or hole doping through ion substitutions or through creation of lattice vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. M. V. Sadovskii, Phys. Usp. 51, 1201 (2008).

    Article  ADS  Google Scholar 

  3. L. Ivanovskii, Phys. Usp. 51, 1229 (2008).

    Article  ADS  Google Scholar 

  4. Z. A. Ren and Z. X. Zhao, Adv. Mater. 21, 4584 (2009).

    Article  Google Scholar 

  5. J. Paglione and R. L. Greene, Nature Phys. 6, 645 (2010).

    Article  ADS  Google Scholar 

  6. D. C. Johnson, Adv. Phys. 59, 803 (2010).

    Article  ADS  Google Scholar 

  7. L. Ivanovskii, Russ. Chem. Rev. 79, 1 (2010).

    Article  ADS  Google Scholar 

  8. G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

    Article  ADS  Google Scholar 

  9. D. Johrendt, J. Mater. Chem. 21, 13726 (2011).

    Article  Google Scholar 

  10. D. Johrendt, H. Hosono, R. D. Hoffmann, and R. Pöttgen, Zeitschr. Kristallogr. 226, 435 (2011).

    ADS  Google Scholar 

  11. L. Ivanovskii, Physica C 471, 409 (2011).

    Article  ADS  Google Scholar 

  12. M. V. Sadovskii, E. Z. Kuchinskii, and I. A. Nekrasov, J. Magn. Magn. Mater. 324, 3481 (2012).

    Article  ADS  Google Scholar 

  13. D. J. Singh, Sci. Technol. Adv. Mater. 13, 054304 (2012).

    Article  Google Scholar 

  14. S. Fujitsu, S. Matsuishi, and H. Hosono, Int. Mater. Rev. 57, 311 (2012).

    Article  Google Scholar 

  15. X. F. Lu, N. Z. Wang, G. H. Zhang, et al., arXiv:1309.3833.

  16. C. Ozawa and S. M. Kauzlarich, Sci. Technol. Adv. Mater. 9, 033003 (2008).

    Article  Google Scholar 

  17. R. Pöttgen and D. Johrendt, Zeitschr. Naturforsch. B 63, 1135 (2008).

    Google Scholar 

  18. K. Ueda, H. Hiramatsu, M. Hirano, et al., Thin Solid Films 496, 8 (2008).

    Article  ADS  Google Scholar 

  19. H. Hosono, Thin Solid Films 515, 6000 (2007).

    Article  ADS  Google Scholar 

  20. H. Hiramatsu, H. Yanagi, T. Kamiya, et al., Chem. Mater. 20, 326 (2008).

    Article  Google Scholar 

  21. H. Hosono, Physica C 469, 314 (2009).

    Article  ADS  Google Scholar 

  22. V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Solid State Sci. 14, 89 (2012).

    Article  ADS  Google Scholar 

  23. K. Liu, M. Gao, Z. Y. Lu, and T. Xiang, arXiv:1309.5079.

  24. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  25. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  26. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  27. P. Blaha, K. Schwarz, G. Madsen, et al., WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001).

    Google Scholar 

  28. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1956).

    Google Scholar 

  29. L. Ivanovskii, Progr. Mater. Sci. 57, 184 (2012).

    Article  Google Scholar 

  30. F. Pugh, Philos. Mag. 45, 823 (1954).

    Google Scholar 

  31. S. I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

    Article  ADS  Google Scholar 

  32. R. Shein and A. L. Ivanovskii, Scr. Mater. 59, 1099 (2008).

    Article  Google Scholar 

  33. Y. Mizuguhci, Y. Hara, K. Deguchi, et al., Supercond. Sci. Technol. 23, 054013 (2010).

    Article  ADS  Google Scholar 

  34. D. X. Mou, L. Zhao, and X. J. Zhou, Frontiers Phys. 6, 410 (2011).

    Article  Google Scholar 

  35. R. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ivanovskii.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shein, I.R., Ivanovskii, A.L. Electronic band structure, Fermi surface, structural and elastic properties of two polymorphs of MgFeSeO as possible new superconducting systems. Jetp Lett. 98, 609–613 (2014). https://doi.org/10.1134/S0021364013230112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013230112

Keywords

Navigation