Skip to main content
Log in

Features of atomic processes at the formation of a wetting layer and nucleation of three-dimensional Ge islands on Si(111) and Si(100) surfaces

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The intermediate stages of the formation of a Ge wetting layer on Si(111) and Si(100) surfaces under quasiequilibrium grow conditions have been studied by means of scanning tunneling microscopy. The redistribution of Ge atoms and relaxation of mismatch stresses through the formation of surface structures of decreased density and faces different from the substrate orientation have been revealed. The sites of the nucleation of new three-dimensional Ge islands after the formation of the wetting layer have been analyzed. Both fundamental differences and common tendencies of atomic processes at the formation of wetting layers on Si(111) and Si(100) surfaces have been demonstrated. The density of three-dimensional nuclei on the Si(111) surface is determined by changed conditions for the surface diffusion of Ge adatoms after change in the surface structure. Transition to three-dimensional growth on the Si(100) surface is determined by the nucleation of single {105} faces on the rough Ge(100) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Narusawa and W. M. Gibson, Phys. Rev. Lett. 47, 1459 (1981).

    Article  ADS  Google Scholar 

  2. T. Ichikawa and S. Ino, Surf. Sci. 136, 267 (1984).

    Article  ADS  Google Scholar 

  3. M. Asai, H. Ueba, and C. Tatsuyama, J. Appl. Phys. 58, 2577 (1985).

    Article  ADS  Google Scholar 

  4. S. M. Pintus, S. I. Stenin, A. I. Toropov, et al., Thin Solid Films 151, 275 au](1987).

    Article  ADS  Google Scholar 

  5. Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).

    Article  ADS  Google Scholar 

  6. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  ADS  Google Scholar 

  7. U. Koehler, O. Jusko, G. Pietsch, et al., Surf. Sci. 248, 321 (1991).

    Article  ADS  Google Scholar 

  8. N. Motta, A. Sgarlata, R. Calarco, et al., Surf. Sci. 406, 254 (1998).

    Article  ADS  Google Scholar 

  9. B. Voigtlaender, Surf. Sci. Rep. 43, 127 (2001).

    Article  ADS  Google Scholar 

  10. S. A. Teys and B. Z. Olshanetsky, Phys. Low-Dim. Struct. 1–2, 37 (2002).

    Google Scholar 

  11. S. A. Teys, E. M. Trukhanov, A. S. Il’in, et al., JETP Lett. 92, 388 (2010).

    Article  ADS  Google Scholar 

  12. S. A. Teys, E. M. Trukhanov, A. S. Il’in, et al., Bull. Russ. Acad. Sci.: Phys. 75, 1055 (2011).

    Article  Google Scholar 

  13. WSXM free software at www.nanotec.es.

  14. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, et al., Rev. Sci. Instrum. 78, 013705 (2007).

    Article  ADS  Google Scholar 

  15. S. A. Teys, A. B. Talochkin, and B. Z. Olshanetsky, J. Cryst. Growth 311, 3898 (2009).

    Article  ADS  Google Scholar 

  16. S. A. Teys, A. B. Talochkin, K. N. Romanyuk, and B. Z. Olshanetsky, Phys. Solid State 46, 80 (2004).

    Article  ADS  Google Scholar 

  17. Yu. B. Bolkhovityanov, S. Ts. Krivoshchapov, A. I. Nikiforov, et al., Phys. Solid State 46, 64 (2004).

    Article  ADS  Google Scholar 

  18. K. N. Romanyuk, S. A. Teys, and B. Z. Olshanetsky, Phys. Solid State 48, 1820 (2006).

    Article  ADS  Google Scholar 

  19. O. P. Pchelyakov, V. A. Markov, A. I. Nikiforov, et al., Thin Solid Films 306, 299 (1997).

    Article  ADS  Google Scholar 

  20. B. Voigtlaender, A. Zinner, and T. Weber, Rev. Sci. Instrum. 67, 2568 (1996).

    Article  ADS  Google Scholar 

  21. B. Voigtlaender and T. Weber, Phys. Rev. B 54, 7709 (1996).

    Article  ADS  Google Scholar 

  22. B. Z. Olshanetsky and S. A. Teys, Surf. Sci. 230, 184 (1990).

    Article  ADS  Google Scholar 

  23. S. A. Teys, K. N. Romanyuk, R. A. Zhachuk, and B. Z. Olshanetsky, Surf. Sci. 600, 4878 (2006).

    Article  ADS  Google Scholar 

  24. K. Oura, V. G. Lifshits, A. A. Sarann, et al., Surface Science, An Introduction (Springer, Berlin, Heidelberg, 2003; Nauka, Moscow, 2006).

    Google Scholar 

  25. T. Ichikawa and S. Ino, Surf. Sci. 105, 395 (1981).

    Article  ADS  Google Scholar 

  26. V. Cherepanov and B. Voigtlaender, Phys. Rev. B 69, 125331 (2004).

    Article  ADS  Google Scholar 

  27. P. M. J. Maree, K. Nakagawa, F. M. Mulders, et al., Surf. Sci. 191, 305 (1987).

    Article  ADS  Google Scholar 

  28. B. Z. Olshanetsky, V. I. Mashanov, and A. I. Nikiforov, Surf. Sci. 111, 429 (1981).

    Article  ADS  Google Scholar 

  29. B. Z. Olshanetsky, A. V. Rzhanov, and F. L. Edel’man, Sov. Phys. Semicond. 7, 1538 (1973).

    Google Scholar 

  30. A. E. Dolbak, B. Z. Olshanetsky, S. I. Stenin, et al., Surf. Sci. 218, 37 (1989).

    Article  ADS  Google Scholar 

  31. P. W. Murray, R. Lindsay, F. M. Leibsle, et al., Phys. Rev. B 54, 13468 (1996).

    Article  ADS  Google Scholar 

  32. W. Kim, H. Kim, G. Lee, et al., Phys. Rev. Lett. 89, 106102 (2002).

    Article  ADS  Google Scholar 

  33. Y.-W. Mo and M. G. Lagally, J. Cryst. Growth 111, 876 (1991).

    Article  ADS  Google Scholar 

  34. X. Chen, F. Wu, Z. Zhang, et al., Phys. Rev. Lett. 73, 850 (1994).

    Article  ADS  Google Scholar 

  35. F. Wu, X. Chen, Z. Zhang, et al., Phys. Rev. Lett. 74, 574 (1995).

    Article  ADS  Google Scholar 

  36. I. Goldfarb, P. T. Hayden, J. H. G. Owen, et al., Phys. Rev. Lett. 78, 3959 (1997).

    Article  ADS  Google Scholar 

  37. A. Rastelli, H. von Kanel, G. Albini, et al., Phys. Rev. Lett. 90, 216104 (2003).

    Article  ADS  Google Scholar 

  38. M. Tomitori, K. Watanabe, M. Kobayashi, et al., Appl. Surf. Sci. 76–77, 323 (1994).

    Google Scholar 

  39. A. I. Nikiforov, V. A. Cherepanov, and O. P. Pchelyakov, Poverkhnost’, No. 6, 74 (2002).

  40. I. Goldfarb, P. T. Hayden, J. H. G. Owen, et al., Phys. Rev. B 56, 10459 (1997).

    Article  ADS  Google Scholar 

  41. D. E. Jesson, M. Kastner, and B. Voigtlander, Phys. Rev. Lett. 84, 330 (2000).

    Article  ADS  Google Scholar 

  42. L. V. Arapkina and V. A. Yuryev, Nanoscale Res. Lett. 6, 345 (2011).

    Article  ADS  Google Scholar 

  43. M. Kastner and B. Voigtlander, Phys. Rev. Lett. 82, 2745 (1999).

    Article  ADS  Google Scholar 

  44. http://www.fz-juelich.de/video/voigtlaender.

  45. L. V. Arapkina and V. A. Yuryev, Phys. Rev. B 82, 045315 (2010).

    Article  ADS  Google Scholar 

  46. I. Goldfarb, Phys. Rev. Lett. 95, 025501 (2005).

    Article  ADS  Google Scholar 

  47. R. Butz and H. Luth, Thin Solid Films 336, 69 (1998).

    Article  ADS  Google Scholar 

  48. A. Vailionis, B. Cho, G. Glass, et al., Phys. Rev. Lett. 85, 3672 (2000).

    Article  ADS  Google Scholar 

  49. F. Montalenti, D. B. Migas, F. Gamba, et al., Phys. Rev. B 70, 245315 (2004).

    Article  ADS  Google Scholar 

  50. L. Huang, G.-H. Lu, F. Liu, et al., Surf. Sci. 601, 3067 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Teys.

Additional information

Original Russian Text © S.A. Teys, 2012, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 96, No. 12, pp. 884–893.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teys, S.A. Features of atomic processes at the formation of a wetting layer and nucleation of three-dimensional Ge islands on Si(111) and Si(100) surfaces. Jetp Lett. 96, 794–802 (2013). https://doi.org/10.1134/S0021364012240113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012240113

Keywords

Navigation