Skip to main content
Log in

On the energy dependence of the yield of doubly charged negative ions during the capture of free electrons by C60(CF3)12 trifluoromethylfullerene molecules

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Peaks of C60(CF3) 2− n doubly charged negative ions (n = 6–12) have been observed in the mass spectra of the resonance electron capture by trifluoromethylfullerene C60(CF3)12 molecules. It has been established that these ions are formed owing to the attachment of two free isoenergetic electrons. The autodetachment of an extra electron has been detected for the doubly charged molecular ions (n = 12). It has been established from the observation of the delayed fragmentation of the most abundant ions with n = 8 and 10 that the doubly charged negative ions, like their singly charged analogs, are metastable with respect to the separation of the CF3 fragment(s). The yield of doubly charged negative ions has been obtained as a function of the electron energy. By comparing them with the analogous dependences for the singly charged ions, the specific features have been revealed which were associated with the presence of the repulsive Coulomb barrier and the regular effect of the doubled energy of two additional electrons on the energy dependence of the dissociative decay of the doubly charged negative ions. The absolute cross section for the formation of the C60(CF3) 2−10 ions has been measured. At the energy of their yield maximum near the 5 eV, it is ∼1 × 10−19 cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Vekey, Mass Spectrometry Rev. 14, 195 (1995).

    Article  Google Scholar 

  2. M. K. Scheller, R. N. Compton, and L. S. Cederbaum, Science 270, 1160 (1995).

    Article  ADS  Google Scholar 

  3. H. G. Weikert, L. S. Cederbaum, F. Tarantelli, and A. I. Boldyrev, Zeitschr. Phys. D 18, 299 (1991).

    ADS  Google Scholar 

  4. A. Dreuw and L. S. Cederbaum, Phys. Rev. A 63, 049904 (2001).

    Article  ADS  Google Scholar 

  5. A. I. Boldyrev, M. Gutowski, and J. Simons, J. Acc. Chem. Res. 29, 497 (1996).

    Article  Google Scholar 

  6. X.-B. Wang and L.-S. Wang, Nature 400, 245 (1999).

    Article  ADS  Google Scholar 

  7. J. H. Bowie and D. J. Stapleton, J. Am. Chem. Soc. 98, 6480 (1976).

    Google Scholar 

  8. H. Gnaser, Nucl. Instrum. Methods Phys. Res. B 149, 38 (1999).

    Article  ADS  Google Scholar 

  9. T. Arthur, J. Am. Chem. Soc. 116, 10761 (1994).

    Article  Google Scholar 

  10. X.-B. Wang and L.-S. Wang, Ann. Rev. Phys. Chem. 60, 105 (2009).

    Article  ADS  Google Scholar 

  11. A. V. Streletskiy, P. Hvelplund, S. B. Nielsen, et al., J. Chem. Phys. 124, 144306 (2006).

    Article  ADS  Google Scholar 

  12. C. Jin, R. L. Hettich, R. N. Compton, et al., Phys. Rev. Lett. 73, 2821 (1994).

    Article  ADS  Google Scholar 

  13. R. N. Compton, A. A. Tuinman, C. E. Klots, et al., Phys. Rev. Lett. 78, 4367 (1997).

    Article  ADS  Google Scholar 

  14. R. L. Hettich, R. N. Compton, and R. H. Ritchie, Phys. Rev. Lett. 67, 1242 (1991).

    Article  ADS  Google Scholar 

  15. T. Drewello, H. Frauendorf, R. Herzschuh, et al., Chem. Phys. Lett. 405, 93 (2005).

    Article  ADS  Google Scholar 

  16. O. V. Boltalina, A. V. Streletskii, I. N. Ioffe, et al., J. Chem. Phys. 122 (2005).

  17. J. Hartig, M. N. Blom, O. Hampe, and M. M. Kappes, Int. J. Mass Spectrom. 229, 93 (2003).

    Article  Google Scholar 

  18. R. V. Khatymov, V. Yu. Markov, R. F. Tuktarov, et al., Int. J. Mass Spectrom. 272, 119 (2008).

    Article  ADS  Google Scholar 

  19. V. A. Mazunov, P. V. Shchukin, R. V. Khatymov, and M. V. Muftakhov, Mass-spektrom. 3, 11 (2006).

    Google Scholar 

  20. S. I. Troyanov, A. Dimitrov, and E. Kemnitz, Angew. Chem. Int. Ed. 45, 1971 (2006).

    Article  Google Scholar 

  21. R. F. Tuktarov, R. V. Khatymov, V. Yu. Markov, et al., JETP Lett. 96, 664 (2012).

    Google Scholar 

  22. V. Yu. Markov, V. E. Aleshina, A. Ya. Borschevskiy, et al., Int. J. Mass Spectrom. 251, 16 (2006).

    Article  ADS  Google Scholar 

  23. R. V. Khatymov, R. F. Tuktarov, A. V. Pogulyai, and M. V. Muftakhov, Russ. J. Phys. Chem. B 3, 770 (2009).

    Article  Google Scholar 

  24. R. G. Cooks, J. H. Beynon, R. M. Caprioli, and G. R. Lester, Metastable Ions (Elsevier Scientific, Amsterdam, 1973).

    Google Scholar 

  25. R. V. Khatymov, P. V. Shchukin, R. F. Tuktarov, et al., Int. J. Mass Spectrom. 303, 55 (2011).

    Article  Google Scholar 

  26. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).

    Article  ADS  Google Scholar 

  27. V. S. Prabhudesai, D. Nandi, and E. Krishnakumar, Eur. Phys. J. D 35, 261 (2005).

    Article  ADS  Google Scholar 

  28. R. F. Tuktarov, R. V. Khatymov, P. V. Shchukin, et al., JETP Lett. 90, 515 (2009).

    Article  ADS  Google Scholar 

  29. R. V. Khatymov, R. F. Tuktarov, and M. V. Muftakhov, JETP Lett. 93, 437 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Khatymov.

Additional information

Original Russian Text © R.V. Khatymov, R.F. Tuktarov, V.Yu. Markov, N.A. Romanova, M.V. Muftakhov, 2012, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 96, No. 10, pp. 732–737.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khatymov, R.V., Tuktarov, R.F., Markov, V.Y. et al. On the energy dependence of the yield of doubly charged negative ions during the capture of free electrons by C60(CF3)12 trifluoromethylfullerene molecules. Jetp Lett. 96, 659–663 (2013). https://doi.org/10.1134/S0021364012220055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012220055

Keywords

Navigation