Skip to main content
Log in

Parametric scattering in a system of quasi-two-dimensional exciton polaritons under photoexcitation near the bottom of the upper polariton branch

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Cascade processes of exciton-polariton scattering in a planar semiconductor microcavity taking place under resonance pumping near the bottom of the upper polariton branch are studied theoretically. When the conservation laws allow the decay of the resonantly excited state into two modes that belong to different (the upper and lower) polariton branches, the distribution of scattering directions has the general shape of two rings that correspond to the cross sections of the lower and upper polariton dispersion surfaces by constantenergy planes. Due to the interactions between the particles, instability develops in the system of scattered modes, which is accompanied by marked inhomogeneities in the distribution of the cavity photoluminescence signal. Self-organization in such a system leads to the appearance of solutions of an essentially collective nature. As the critical (threshold) pump power is attained, macroscopic occupancy of a predominant signal mode near the bottom of the lower polariton branch sets in. The characteristics of the signal for different powers and optical polarizations of the pump are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).

    Article  ADS  Google Scholar 

  2. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, et al., Phys. Rev. Lett. 98, 236401 (2007).

    Article  ADS  Google Scholar 

  3. T. K. Paraïso, M. Wouters, Y. Léger, et al., Nature Mater. 9, 655 (2010); 10.1038/nmat2787.

    Article  ADS  Google Scholar 

  4. D. Sarkar, S. S. Gavrilov, M. Sich, et al., Phys. Rev. Lett. 105, 216402 (2010).

    Article  ADS  Google Scholar 

  5. V. D. Kulakovskii, A. I. Tartakovskii, D. N. Krizhanovskii, et al., Nanotechnology 12, 475 (2001).

    Article  ADS  Google Scholar 

  6. N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, et al., Eur. Phys. Lett. 67, 997 (2004).

    Article  ADS  Google Scholar 

  7. N. A. Gippius and S. G. Tikhodeev, J. Phys.: Condens. Matter 16, S3653 (2004).

    Article  ADS  Google Scholar 

  8. S. S. Gavrilov, N. A. Gippius, V. D. Kulakovskii, and S. G. Tikhodeev, J. Exp. Theor. Phys. 104, 715 (2007).

    Article  ADS  Google Scholar 

  9. D. N. Krizhanovskii, S. S. Gavrilov, A. P. D. Love, et al., Phys. Rev. B 77, 115336 (2008).

    Article  ADS  Google Scholar 

  10. A. A. Demenev, A. A. Shchekin, A. V. Larionov, et al., Phys. Rev. Lett. 101, 136401 (2008).

    Article  ADS  Google Scholar 

  11. A. A. Demenev, A. A. Shchekin, A. V. Larionov, et al., Phys. Rev. B 79, 165308 (2009).

    Article  ADS  Google Scholar 

  12. A. Amo, D. Sanvitto, F. P. Laussy, et al., Nature 457, 291 (2009); 10.1038/nature07640.

    Article  ADS  Google Scholar 

  13. D. N. Krizhanovskii, D. M. Whittaker, R. A. Bradley, et al., Phys. Rev. Lett. 104, 126402 (2010).

    Article  ADS  Google Scholar 

  14. S. S. Gavrilov, N. A. Gippius, S. G. Tikhodeev, and V. D. Kulakovskii, J. Exp. Theor. Phys. 110, 825 (2010).

    Article  ADS  Google Scholar 

  15. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, et al., Phys. Rev. B 66, 045102 (2002).

    Article  ADS  Google Scholar 

  16. Jun-ichi Inoue, Tobias Brandes, and Akira Shimizu, Phys. Rev. B 61, 2863 (2000).

    Article  ADS  Google Scholar 

  17. P. Renucci, Tobias Amand, X. Marie, et al., Phys. Rev. B 72, 075317 (2005).

    Article  ADS  Google Scholar 

  18. K. V. Kavokin, P. Renucci, T. Amand, et al., Phys. Status Solidi C 4, 472 (2005).

    Google Scholar 

  19. M. Kuwata-Gonokami, S. Inouye, H. Suzuura, et al., Phys. Rev. Lett. 79, 1341 (1997).

    Article  ADS  Google Scholar 

  20. M. Vladimirova, S. Cronenberger, D. Scalbert, et al., Phys. Rev. B 82, 075301 (2010).

    Article  ADS  Google Scholar 

  21. T. Berstermann, A. V. Scherbakov, A. V. Akimov, et al., Phys. Rev. B 80, 075301 (2009).

    Article  ADS  Google Scholar 

  22. R. Butté, M. S. Skolnick, D. M. Whittaker, et al., Phys. Rev. B 68, 115325 (2003).

    Article  ADS  Google Scholar 

  23. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, et al., Phys. Rev. Lett. 84, 1547 (2000).

    Article  ADS  Google Scholar 

  24. S. S. Gavrilov, A. S. Brichkin, A. A. Dorodny, et al., JETP Lett. 92, 171 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Gavrilov.

Additional information

Original Russian Text © S.S. Gavrilov, S.G. Tikhodeev, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 8, pp. 690–696.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilov, S.S., Tikhodeev, S.G. Parametric scattering in a system of quasi-two-dimensional exciton polaritons under photoexcitation near the bottom of the upper polariton branch. Jetp Lett. 94, 647–652 (2011). https://doi.org/10.1134/S0021364011200045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011200045

Keywords

Navigation