Skip to main content
Log in

On a new mechanism of polariton–polariton scattering

  • Nonlinear Phenomena
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Condensate states of a two-dimensional exciton–polariton system have been considered under the conditions of direct resonant photoexcitation. It has been theoretically predicted that splitting of eigenmodes with orthogonal polarizations leads to the emergence of a new channel of parametric scattering. A polariton condensate spontaneously decays into a set of states in a finite region of the momentum space, thus leading to a strong inhomogeneity in the distributions of the intensity and polarization even in the case of a strictly constant amplitude and zero in-plane momentum of the external field. The new scattering mechanism makes possible self-oscillating and chaotic states of polariton systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).

    Article  ADS  Google Scholar 

  2. Y. Yamamoto, T. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer, New York, 2000).

    Google Scholar 

  3. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and P. Laussy, Microcavities (Oxford Univ. Press, Oxford, 2007).

    Book  Google Scholar 

  4. C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, Phys. Rev. B 58, 7926 (1998).

    Article  ADS  Google Scholar 

  5. A. V. Sekretenko, S. S. Gavrilov, and V. D. Kulakovskii, Phys. Rev. B 88, 195302 (2013).

    Article  ADS  Google Scholar 

  6. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Y. G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007).

    Article  ADS  Google Scholar 

  7. S. S. Gavrilov, N. A. Gippius, S. G. Tikhodeev, and V. D. Kulakovskii, J. Exp. Theor. Phys. 110, 825 (2010).

    Article  ADS  Google Scholar 

  8. T. K. Paraïso, M. Wouters, Y. Léger, F. Morier-Genoud, and B. Deveaud-Plédran, Nat. Mater. 9, 655 (2010).

    Article  ADS  Google Scholar 

  9. D. Sarkar, S. S. Gavrilov, M. Sich, J. H. Quilter, R. A. Bradley, N. A. Gippius, K. Guda, V. D. Kulakovskii, M. S. Skolnick, and D. N. Krizhanovskii, Phys. Rev. Lett. 105, 216402 (2010).

    Article  ADS  Google Scholar 

  10. C. Adrados, A. Amo, T. C. H. Liew, R. Hivet, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, Phys. Rev. Lett. 105, 216403 (2010).

    Article  ADS  Google Scholar 

  11. S. S. Gavrilov, A. V. Sekretenko, S. I. Novikov, C. Schneider, S. Höfling, M. Kamp, A. Forchel, and V. D. Kulakovskii, Appl. Phys. Lett. 102, 011104 (2013).

    Article  ADS  Google Scholar 

  12. A. V. Sekretenko, S. S. Gavrilov, S. I. Novikov, V. D. Kulakovskii, S. Höfling, C. Schneider, M. Kamp, and A. Forchel, Phys. Rev. B 88, 205302 (2013).

    Article  ADS  Google Scholar 

  13. S. S. Gavrilov, A. S. Brichkin, S. I. Novikov, S. Höfling, C. Schneider, M. Kamp, A. Forchel, and V. D. Kulakovskii, Phys. Rev. B 90, 235309 (2014).

    Article  ADS  Google Scholar 

  14. S. S. Gavrilov, A. V. Sekretenko, N. A. Gippius, C. Schneider, S. Höfling, M. Kamp, A. Forchel, and V. D. Kulakovskii, Phys. Rev. B 87, 201303 (2013).

    Article  ADS  Google Scholar 

  15. S. S. Gavrilov, A. A. Demenev, and V. D. Kulakovskii, JETP Lett. 100, 817 (2014).

    Article  ADS  Google Scholar 

  16. S. S. Gavrilov, Phys. Rev. B 94, 195310 (2016).

    Article  ADS  Google Scholar 

  17. N. N. Bogolyubov, Izv. Akad. Nauk, Ser. Fiz. 11, 77 (1947).

    Google Scholar 

  18. N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, Eur. Phys. Lett. 67, 997 (2004).

    Article  ADS  Google Scholar 

  19. S. S. Gavrilov, N. A. Gippius, V. D. Kulakovskii, and S. G. Tikhodeev, J. Exp. Theor. Phys. 104, 715 (2007).

    Article  ADS  Google Scholar 

  20. I. A. Shelykh, Y. G. Rubo, and A. V. Kavokin, Superlatt. Microstruct. 41, 313 (2007).

    Article  ADS  Google Scholar 

  21. S. S. Gavrilov, S. I. Novikov, V. D. Kulakovskii, N. A. Gippius, A. A. Chernov, and S. G. Tikhodeev, JETP Lett. 101, 7 (2015).

    Article  ADS  Google Scholar 

  22. A. S. Brichkin, S. G. Tikhodeev, S. S. Gavrilov, N. A. Gippius, S. I. Novikov, A. V. Larionov, C. Schneider, M. Kamp, S. Höfling, and V. D. Kulakovskii, Phys. Rev. B 92, 125155 (2015).

    Article  ADS  Google Scholar 

  23. R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, Phys. Rev. Lett. 85, 3680 (2000).

    Article  ADS  Google Scholar 

  24. C. Ciuti, P. Schwendimann, and A. Quattropani, Semicond. Sci. Technol. 18, S279 (2003).

    Article  ADS  Google Scholar 

  25. S. S. Gavrilov, Phys. Rev. B 90, 205303 (2014).

    Article  ADS  Google Scholar 

  26. S. S. Gavrilov, A. S. Brichkin, Y. V. Grishina, C. Schneider, S. Höfling, and V. D. Kulakovskii, Phys. Rev. B 92, 205312 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Gavrilov.

Additional information

Original Russian Text © S.S. Gavrilov, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 3, pp. 187–192.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, S.S. On a new mechanism of polariton–polariton scattering. Jetp Lett. 105, 200–204 (2017). https://doi.org/10.1134/S0021364017030079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017030079

Navigation