Skip to main content
Log in

Extremely slow intramolecular vibrational redistribution: Direct observation by time-resolved raman spectroscopy in trifluoropropyne

  • Atoms, Spectra, Radiations
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We have studied the dynamics of intramolecular vibrational redistribution (IVR) from the initially excited mode v1 ≈ 3330 cm−1 (acetylene-type H-C bond) in H-C≡C-CF3 molecules in the gaseous phase by means of anti-Stokes spontaneous Raman scattering. The time constant of this process is estimated as 2.3 ns—this is the slowest IVR time reported so far for the room-temperature gases. It is suggested that so long IVR time with respect to the other propyne derivatives can be explained by a larger defect, in this case, of the Fermi resonance of v1 with v2 + 2v7—the most probable doorway state leading to IVR from v1 to the bath of all vibrational-rotational states with the close energies. In addition, it is shown that the observed dynamics is in agreement with a theoretical model assuming strong vibrational-rotational mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laser Spectroscopy of Highly Vibrationally Excited Molecules, Ed. by V. S. Letokhov (Adam Hilger, Bristol, 1989; Nauka, Moscow, 1990).

    Google Scholar 

  2. T. Uzer, Phys. Rep. 199, 73 (1991).

    Article  ADS  Google Scholar 

  3. K. K. Lehmann, G. Scoles, and B. H. Pate, Ann. Rev. Phys. Chem. 45, 241 (1994).

    Article  ADS  Google Scholar 

  4. P. M. Felker and A. H. Zewail, in Jet Spectroscopy and Molecular Dynamics, Ed. by J. M. Hollas and D. Phillips (Blackie, London, 1995), p. 222.

    Chapter  Google Scholar 

  5. D. J. Nesbitt and R. W. Field, J. Phys. Chem. 100, 12735 (1996).

    Article  Google Scholar 

  6. M. Gruebele, in Advances in Chemical Physics, Ed. by I. Prigogine and S. A. Rice (Wiley, New York, 2000), Vol. 114, p. 193.

    Chapter  Google Scholar 

  7. K. V. Reddy, D. F. Heller, and M. J. Berry, J. Chem. Phys. 76, 2814 (1982).

    Article  ADS  Google Scholar 

  8. R. H. Page, Y. T. Lee, and Y. R. Shen, Phys. Rev. Lett. 59, 1293 (1987).

    Article  ADS  Google Scholar 

  9. A. Mcllroy and D. J. Nesbitt, J. Chem. Phys. 92, 2229 (1990).

    Article  ADS  Google Scholar 

  10. M. Quack, R. Schwarz, and G. Seyfang, J. Chem. Phys. 96, 8727 (1992).

    Article  ADS  Google Scholar 

  11. E. R. Th. Kerstel, K. K. Lehmann, T. F. Mentel, et al., J. Phys. Chem. 95, 8282 (1991).

    Article  Google Scholar 

  12. H. S. Yoo, M. J. DeWitt, and B. H. Pate, J. Phys. Chem. A 108, 1348 (2004).

    Article  Google Scholar 

  13. A. L. Malinovsky, A. A. Makarov, and E. A. Ryabov, Pis’ma Zh. Eksp. Teor. Fiz. 80, 605 (2004) [JETP Lett. 80, 532 (2004)].

    Google Scholar 

  14. A. L. Malinovsky, Yu. S. Doljikov, A. A. Makarov, et al., Chem. Phys. Lett. 419, 511 (2006).

    Article  ADS  Google Scholar 

  15. A. L. Malinovsky, A. A. Makarov, and E. A. Ryabov, Zh. Eksp. Teor. Fiz. 133, 45 (2008) [J. Exp. Theor. Phys. 106, 34 (2008)].

    Google Scholar 

  16. A. A. Makarov, A. L. Malinovsky, and E. A. Ryabov, J. Chem. Phys. 129, 116102 (2008).

    Article  ADS  Google Scholar 

  17. J. S. Go, G. A. Bethardy, and D. S. Perry, J. Phys. Chem. 94, 6153 (1990).

    Article  Google Scholar 

  18. A. M. Andrews, G. T. Fraser, and B. H. Pate, J. Chem. Phys. 109, 4290 (1998).

    Article  ADS  Google Scholar 

  19. E. Hudspeth, D. A. McWhorter, and B. H. Pate, J. Chem. Phys. 109, 4316 (1998).

    Article  ADS  Google Scholar 

  20. B. H. Pate, K. K. Lehmann, and G. Scoles, J. Chem. Phys. 95, 3891 (1991).

    Article  ADS  Google Scholar 

  21. M. Bixon and J. Jortner, J. Chem. Phys. 48, 715 (1968).

    Article  ADS  Google Scholar 

  22. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1969), Vol. 1, Ch. 2, Appendix 3.

    Google Scholar 

  23. E. Ott, Chaos in Dynamical Systems (Cambridge Univ., Cambridge, 1993), p. 334.

    MATH  Google Scholar 

  24. C. V. Berney, L. R. Cousins, and F. A. Miller, Spectrochim. Acta 19, 2019 (1963).

    Article  ADS  Google Scholar 

  25. J. N. Shoolery, R. G. Shulman, W. F. Sheehan, et al., J. Chem. Phys. 19, 1364 (1951).

    Article  ADS  Google Scholar 

  26. A. A. Kosterev, A. A. Makarov, A. L. Malinovsky, and E. A. Ryabov, Chem. Phys. 219, 305 (1997).

    Article  Google Scholar 

  27. A. A. Stuchebrukhov and R. A. Marcus, J. Chem. Phys. 98, 6044 (1993).

    Article  ADS  Google Scholar 

  28. A. L. Malinovsky, A. A. Makarov, and E. A. Ryabov, Proc. SPIE 6580, 65800K (2006).

    Article  ADS  Google Scholar 

  29. E. R. Th. Kerstel, K. K. Lehmann, B. H. Pate, and G. Scoles, J. Chem. Phys. 100, 2588 (1994).

    Article  ADS  Google Scholar 

  30. G. M. Zaslavsky and B. V. Chirikov, Usp. Fiz. Nauk 105, 3 (1971) [Sov. Phys. Usp. 14, 549 (1972)].

    Google Scholar 

  31. E. V. Shuryak, Zh. Eksp. Teor. Fiz. 71, 2039 (1976) [Sov. Phys. JETP 44, 1070 (1976)].

    ADS  Google Scholar 

  32. B. V. Chirikov, Phys. Rep. 52, 263 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  33. M. V. Kuzmin, V. S. Letokhov, and A. A. Stuchebrukhov, Zh. Eksp. Teor. Fiz. 90, 458 (1986) [Sov. Phys. JETP 63, 264 (1986)].

    Google Scholar 

  34. V. N. Bagratashvili, M. V. Kuzmin, V. S. Letokhov, and A. A. Stuchebrukhov, Chem. Phys. 97, 13 (1985).

    Article  Google Scholar 

  35. A. Stuchebrukhov, S. Ionov, and V. Letokhov, J. Phys. Chem. 93, 5357 (1989).

    Article  Google Scholar 

  36. A. A. Makarov, in Laser Spectroscopy of Highly Vibrationally Excited Molecules, Ed. by V. S. Letokhov (Adam Hilger, Bristol, 1989, p. 106; Nauka, Moscow, 1990, p. 77).

    Google Scholar 

  37. V. O. Kompanets, V. B. Laptev, A. A. Makarov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 92, 157 (2010) [JETP Lett. 92, 135 (2010)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Makarov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinovsky, A.L., Makarov, A.A. & Ryabov, E.A. Extremely slow intramolecular vibrational redistribution: Direct observation by time-resolved raman spectroscopy in trifluoropropyne. Jetp Lett. 93, 124–128 (2011). https://doi.org/10.1134/S0021364011030106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011030106

Keywords

Navigation