Skip to main content
Log in

Luminescent properties of semiconductor composite systems composed of erbium triphthalocyanine molecules and a silicon slot structure in the near-infrared region

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Photoluminescence spectra of organic semiconductors based on mono-, bis-, and triphthalocyanine containing erbium as a complexing agent have been obtained in the range of 1–1.8 μm. Comparison of the spectral characteristics has shown that erbium triphthalocyanine has the highest photoluminescence quantum yield at a wavelength of 1.5 μm. To enhance this effect, composite materials based on erbium triphthalocyanine and a silicon slot structure have been synthesized, in which an additional increase in the photoluminescence signal near 1.14 μm has been observed. At the same time, no photoluminescence signal has been observed near the wavelength of 1.5 μm. This can be explained by taking into account the interaction of the erbium triphthalocyanine molecules with the adsorption centers of the silicon matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. Poole and F. J. Owens, Introduction to Nanotechnology (Wiley, Hoboken, NJ, 2003; Tekhnosfera, Moscow, 2006).

    Google Scholar 

  2. D. D. Diiaz, H. J. Bolink, L. Cappelli, et al., Tetrahedron Lett. 48, 4657 (2007).

    Article  Google Scholar 

  3. S. M. Contakes, S. T. Beatty, K. K. Dailey, et al., Organometallics 19, 4767 (2000).

    Article  Google Scholar 

  4. D. Dündar, H. Can, D. Atilla, et al., Polyhedron 27, 3383 (2008).

    Article  Google Scholar 

  5. N. Ishikawa, M. Sugita, and W. Wernsdorfer, J. Am. Chem. Soc. 127, 3650 (2005).

    Article  Google Scholar 

  6. B. González-Díaz, R. Guerrero-Lemus, N. Marrero, et al., J. Phys. D: Appl. Phys. 39, 631 (2006).

    Article  ADS  Google Scholar 

  7. J. Xu and A. J. Steckl, IEEE Electron Dev. Lett. 15, 507 (1994).

    Article  ADS  Google Scholar 

  8. J. Xu and A. J. Steckl, J. Vac. Sci. Technol. B 13, 1221 (1995).

    Article  Google Scholar 

  9. L. Schirone, G. Sotgiu, A. Parisini and A. Montecchi, Solid State Phenom. 54, 59 (1997).

    Article  Google Scholar 

  10. V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, et al., Fiz. Tekh. Poluprovodn. 36, 996 (2002) [Semiconductors 36, 932 (2002)].

    Google Scholar 

  11. F. Genereux, S. W. Leonard, and H. M. van Driel, Phys. Rev. B 63, 161101 (2001).

    Article  ADS  Google Scholar 

  12. E. V. Astrova, T. S. Perova, V. A. Tolmachev, et al., Fiz. Tekh. Poluprovodn. 37, 417 (2003) [Semiconductors 37, 399 (2003)].

    Google Scholar 

  13. V. E. Pushkarev, M. O. Breusova, E. V. Shulishov, and Yu. V. Tomilov, Russ. Chem. Bull., Int. Ed. 54, 2087 (2005).

    Article  Google Scholar 

  14. B. Bhushan, in Springer Handbook of Nanotechnology (Springer, Berlin, 2004), p. 204.

    Google Scholar 

  15. D. L. Kendall, Ann. Rev. Mater. Sci. 9, 373 (1979).

    Article  ADS  Google Scholar 

  16. H. Jansen, H. Gardeniers, M. De Boer, et al., J. Micromech. Microeng. 6, 14 (1996).

    Article  ADS  Google Scholar 

  17. H. F. Winters, J. Appl. Phys. 49, 5165 (1978).

    Article  ADS  Google Scholar 

  18. G. S. Oehrlein, Reactive Ion Etching: Handbook of Plasma Processing Technology, Ed. by S. M. Rossnagel (Noyes, Park Ridge, NJ, 1990), p. 196.

    Google Scholar 

  19. H. V. Jansen, J. G. E. Gardeniers, J. Elders, et al., Sens. Actuat. A 41, 136 (1994).

    Article  Google Scholar 

  20. R. W. Liptak, B. Devetter, J. H. Thomas III, et al., J. Nanotechnology 20, 035603 (2009).

    Article  Google Scholar 

  21. A. V. Zoteev, L. A. Golovan’, E. Yu. Krutkova, et al., Fiz. Tekh. Poluprovodn. 41, 989 (2007) [Semiconductors 41, 970 (2007)].

    Google Scholar 

  22. D. A. Mamichev, V. Yu. Timoshenko, A. V. Zoteyev, et al., Phys. Status Solidi B 246, 173 (2009).

    Article  ADS  Google Scholar 

  23. S. A. Bagnich, Fiz. Tverd. Tela 42, 1729 (2000) [Phys. Solid State 42, 1775 (2000)].

    Google Scholar 

  24. S. Subbiah and R. Mokaya, J. Phys. Chem. B 109, 5079 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Belogorokhov.

Additional information

Original Russian Text © I.A. Belogorokhov, D.A. Mamichev, V.E. Pushkarev, L.G. Tomilova, D.P. Khokhlov, 2010, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 92, No. 10, pp. 746–750.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belogorokhov, I.A., Mamichev, D.A., Pushkarev, V.E. et al. Luminescent properties of semiconductor composite systems composed of erbium triphthalocyanine molecules and a silicon slot structure in the near-infrared region. Jetp Lett. 92, 676–680 (2010). https://doi.org/10.1134/S002136401022008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401022008X

Keywords

Navigation