Skip to main content
Log in

Consistent α-cluster description of the 12C(0 +2 ) “hoyle” resonance

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The near-threshold 12C(0 +2 ) resonance provides unique possibility for fast helium burning in stars, as predicted by Hoyle to explain the observed abundance of elements in the Universe. Properties of this resonance are calculated within the framework of the α cluster model whose two-body and three-body effective potentials are tuned to describe the α-α scattering data, the energies of the 0 +1 and 0 +2 states, and the 0 +1 -state rootmean-square radius. The extremely small width of the 0 +2 state, the 0 +2 → 0 +1 monopole transition matrix element, and transition radius are found in remarkable agreement with the experimental data. The 0 +2 -state structure is described as a system of three α particles oscillating between the ground-state-like configuration and the elongated chain configuration whose probability exceeds 0.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954).

    Article  ADS  Google Scholar 

  2. C. W. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen, Phys. Rev. 107, 508 (1957).

    Article  ADS  Google Scholar 

  3. A. G. W. Cameron, Astrophys. J. 130, 916 (1959).

    Article  ADS  Google Scholar 

  4. K. Nomoto, F.-K. Thielemann, and S. Miyaji, Astron. Astrophys. 149, 239 (1985).

    ADS  Google Scholar 

  5. I. Fushiki and D. Q. Lamb, Astrophys. J. 317, 368 (1987).

    Article  ADS  Google Scholar 

  6. S. Schramm, K. Langanke, and S. E. Koonin, Astrophys. J. 397, 579 (1992).

    Article  ADS  Google Scholar 

  7. K. Ogata, M. Kan, and M. Kamimura, Prog. Theor. Phys. 122, 1055 (2009).

    Article  MATH  ADS  Google Scholar 

  8. H. Oberhummer, A. Csótó, and H. Schlattl, Science 289, 88 (2000).

    Article  ADS  Google Scholar 

  9. H. O. U. Fynbo, C. A. Diget, U. C. Bergmann, et al., Nature 433, 136 (2005).

    Article  ADS  Google Scholar 

  10. R. Álvarez-Rodríguez, A. S. Jensen, E. Garrido, et al., Phys. Rev. C 77, 064305 (2008).

    Article  ADS  Google Scholar 

  11. O. S. Kirsebom, M. Alcorta, M. J. G. Borge, et al., Phys. Rev. C 81, 064313 (2010).

    Article  ADS  Google Scholar 

  12. Y. Funaki, A. Tohsaki, H. Horiuchi, et al., Eur. Phys. J. A 28, 259 (2006).

    Article  ADS  Google Scholar 

  13. S. I. Fedotov, O. I. Kartavtsev, V. I. Kochkin, and A. V. Malykh, Phys. Rev. C 70, 014006 (2004).

    Article  ADS  Google Scholar 

  14. S. I. Fedotov, O. I. Kartavtsev, and A. V. Malykh, Eur. Phys. J. A 26, 201 (2005).

    Article  ADS  Google Scholar 

  15. I. Filikhin, V. M. Suslov, and B. Vlahovic, J. Phys. G 31, 1207 (2005).

    Article  ADS  Google Scholar 

  16. M. Chernykh, H. Feldmeier, T. Neff, et al., Phys. Rev. Lett. 98, 032501 (2007).

    Article  ADS  Google Scholar 

  17. P. Descouvemont, J. Phys. G 37, 064010 (2010).

    Article  ADS  Google Scholar 

  18. D. M. Brink, H. Friedrich, A. Weiguny, and C. W. Wong, Phys. Lett. B 33, 143 (1970).

    Article  ADS  Google Scholar 

  19. R. Bijker and F. Iachello, Phys. Rev. C 61, 067305 (2000).

    Article  ADS  Google Scholar 

  20. R. Álvarez-Rodríguez, E. Garrido, A. S. Jensen, et al., Eur. Phys. J. A 31, 303 (2007).

    Article  ADS  Google Scholar 

  21. S. Wüstenbecker, H. W. Becker, H. Ebbing, et al., Z. Phys. A 344, 205 (1992).

    Article  ADS  Google Scholar 

  22. D. R. Tilley, J. H Kelley, J. L. Godwin, et al., Nucl. Phys. A 745, 155 (2004).

    Article  ADS  Google Scholar 

  23. F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990).

    Article  ADS  Google Scholar 

  24. E. A. J. M. Offermann, L. S. Cardman, C. W. de Jager, et al., Phys. Rev. C 44, 1096 (1991).

    Article  ADS  Google Scholar 

  25. W. Ruckstuhl, B. Aas, W. Beer, et al., Nucl. Phys. A 430, 685 (1984).

    Article  ADS  Google Scholar 

  26. P. Strehl and T. H. Schucan, Phys. Lett. B 27, 641 (1968).

    Article  ADS  Google Scholar 

  27. I. Sick, Phys. Rev. C 77, 041302 (2008).

    Article  ADS  Google Scholar 

  28. M. Chernykh, H. Feldmeier, T. Neff, et al., Phys. Rev. Lett. 105, 022501 (2010).

    Article  ADS  Google Scholar 

  29. A. N. Danilov, T. L. Belyaeva, A. S. Demyanova, et al., Phys. Rev. C 80, 054603 (2009).

    Article  ADS  Google Scholar 

  30. M. Freer, A. H. Wuosmaa, R. R. Betts, et al., Phys. Rev. C 49, R1751 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotov, S.I., Kartavtsev, O.I. & Malykh, A.V. Consistent α-cluster description of the 12C(0 +2 ) “hoyle” resonance. Jetp Lett. 92, 647–651 (2010). https://doi.org/10.1134/S0021364010220017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010220017

Keywords

Navigation