Skip to main content
Log in

Bound on induced gravitational wave background from primordial black holes

  • Gravity, Astrophysics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The today’s energy density of the induced (second order) gravitational wave background in the frequency region ∼10−3–103 Hz is constrained using the existing limits on primordial black hole production in the early Universe. It is shown, in particular, that at frequencies near ∼40 Hz (which is the region explored by LIGO detector), the value of the induced part of ΩGW cannot exceed (1−3) × 10−7. The spread of values of the bound is caused by the uncertainty in parameters of the gravitational collapse of black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Matarrese, O. Pantano, and D. Saez, Phys. Rev. Lett. 72, 320 (1994), arXiv:astro-ph/9310036.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. S. Matarrese, S. Mollerach, and M. Bruni, Phys. Rev. D 58, 043504 (1998), arXiv:astro-ph/9707278.

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Carbone and S. Matarrese, Phys. Rev. D 71, 043508 (2005), arXiv:astro-ph/0407611.

    Article  ADS  Google Scholar 

  4. S. Mollerach, D. Harari, and S. Matarrese, Phys. Rev. D 69, 063002 (2004) [arXiv:astro-ph/0310711].

    Article  ADS  Google Scholar 

  5. K. N. Ananda, C. Clarkson, and D. Wands, Phys. Rev. D 75, 123518 (2007) [arXiv:gr-qc/0612013].

    Article  ADS  Google Scholar 

  6. D. Baumann, P. J. Steinhardt, K. Takahashi, and K. Ichiki, Phys. Rev. D 76, 084019 (2007), arXiv:hepth/0703290.

    Article  ADS  Google Scholar 

  7. R. Saito and J. Yokoyama, Phys. Rev. Lett. 102, 161101 (2009), arXiv:0812.4339 [astro-ph].

    Article  ADS  Google Scholar 

  8. E. Bugaev and P. Klimai, arXiv:0908.0664 [astroph.CO].

  9. B. J. Carr, Astrophys. J. 201, 1 (1975).

    Article  ADS  Google Scholar 

  10. M. Y. Khlopov and A. G. Polnarev, Phys. Lett. B 97, 383 (1980); A. G. Polnarev and M. Y. Khlopov, Sov. Astron. 26, 391 (1983); Sov. Phys. Usp. 28, 213 (1985).

    Article  ADS  Google Scholar 

  11. M. Y. Khlopov, arXiv:0801.0116 [astro-ph].

  12. E. Bugaev and P. Klimai, Phys. Rev. D 79, 103511 (2009), arXiv:0812.4247 [astro-ph].

    Article  ADS  Google Scholar 

  13. A. S. Josan, A. M. Green, and K. A. Malik, Phys. Rev. D 79, 103520 (2009), arXiv:0903.3184 [astro-ph.CO].

    Article  MathSciNet  ADS  Google Scholar 

  14. E. Bugaev and P. Klimai, Phys. Rev. D 78, 063515 (2008), arXiv:0806.4541 [astro-ph].

    Article  ADS  Google Scholar 

  15. D. Lindley, Mon. Not. R. Astron. Soc. 193, 593 (1980).

    ADS  Google Scholar 

  16. D. Clancy, R. Guedens, and A. R. Liddle, Phys. Rev. D 68, 023507 (2003), arXiv:astro-ph/0301568.

    Article  ADS  Google Scholar 

  17. H. Tashiro and N. Sugiyama, Phys. Rev. D 78, 023004 (2008), arXiv:0801.3172 [astro-ph].

    Article  ADS  Google Scholar 

  18. Ya. B. Zeldovich, A. A. Starobinsky, M. Yu. Khlopov, and V. M. Chechetkin, Sov. Astron. Lett. 3, 110 (1977).

    ADS  Google Scholar 

  19. A. A. Starobinsky, JETP Lett. 30, 682 (1979).

    ADS  Google Scholar 

  20. L. P. Grishchuk, Sov. Phys. JETP 40, 409 (1975).

    ADS  Google Scholar 

  21. V. A. Rubakov, M. V. Sazhin, and A. V. Veryaskin, Phys. Lett. B 115, 189 (1982).

    Article  ADS  Google Scholar 

  22. R. Fabbri and M. D. Pollock, Phys. Lett. B 125, 445 (1983).

    Article  ADS  Google Scholar 

  23. L. F. Abbott and M. B. Wise, Nucl. Phys. B 244, 541 (1984).

    Article  ADS  Google Scholar 

  24. A. A. Starobinsky, Sov. Astron. Lett. 11, 133 (1985).

    ADS  Google Scholar 

  25. B. Allen, E. E. Flanagan, and M. A. Papa, Phys. Rev. D 61, 024024 (2000), arXiv:gr-qc/9906054.

    Article  ADS  Google Scholar 

  26. T. L. Smith, M. Kamionkowski, and A. Cooray, Phys. Rev. D 73, 023504 (2006), arXiv:astro-ph/0506422.

    Article  ADS  Google Scholar 

  27. S. Y. Khlebnikov and I. I. Tkachev, Phys. Rev. D 56, 653 (1997), arXiv:hep-ph/9701423.

    Article  ADS  Google Scholar 

  28. R. Easther and E. A. Lim, JCAP 0604, 010 (2006), arXiv:astro-ph/0601617.

    ADS  Google Scholar 

  29. J. F. Dufaux, A. Bergman, G. N. Felder, et al., Phys. Rev. D 76, 123517 (2007),arXiv:0707.0875 [astro-ph].

    Article  ADS  Google Scholar 

  30. J. F. Dufaux, G. N. Felder, L. Kofman, and O. Navros, JCAP 0903, 001 (2009), arXiv:0812.2917 [astro-ph].

    ADS  Google Scholar 

  31. J. Garcia-Bellido, D. G. Figueroa, and A. Sastre, Phys. Rev. D 77, 043517 (2008), arXiv:0707.0839 [hep-ph].

    Article  ADS  Google Scholar 

  32. J. F. Dufaux, Phys. Rev. Lett. 103, 041301 (2009), arXiv:0902.2574 [astro-ph.CO].

    Article  ADS  Google Scholar 

  33. J. F. Dufaux, private communication.

  34. C. Grojean and G. Servant, Phys. Rev. D 75, 043507 (2007), arXiv:hep-ph/0607107.

    Article  ADS  Google Scholar 

  35. C. J. Hogan, Phys. Rev. D 74, 043526 (2006), arXiv:astro-ph/0605567.

    Article  ADS  Google Scholar 

  36. M. R. DePies and C. J. Hogan, Phys. Rev. D 75, 125006 (2007), arXiv:astro-ph/0702335.

    Article  ADS  Google Scholar 

  37. M. Gasperini and G. Veneziano, Phys. Rept. 373, 1 (2003), arXiv:hep-th/0207130.

    Article  MathSciNet  ADS  Google Scholar 

  38. M. Gasperini, arXiv:hep-th/9907067.

  39. C. J. Hogan, Phys. Rev. Lett. 85, 2044 (2000), arXiv:astro-ph/0005044.

    Article  ADS  Google Scholar 

  40. G. S. Bisnovatyi-Kogan and V. N. Rudenko, Class. Quant. Grav. 21, 3347 (2004), arXiv:gr-qc/0406089.

    Article  MATH  ADS  Google Scholar 

  41. R. Anantua, R. Easther, and J. T. Giblin, Phys. Rev. Lett. 103, 111303 (2009), arXiv:0812.0825 [astro-ph].

    Article  ADS  Google Scholar 

  42. V. F. Schwarztmann, JETP Lett. 9, 184 (1969).

    ADS  Google Scholar 

  43. R. Brustein, M. Gasperini, and G. Veneziano, Phys. Rev. D 55, 3882 (1997), arXiv:hep-th/9604084.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Klimai.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugaev, E.V., Klimai, P.A. Bound on induced gravitational wave background from primordial black holes. Jetp Lett. 91, 1–5 (2010). https://doi.org/10.1134/S0021364010010017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010010017

Keywords

Navigation