Skip to main content
Log in

Curvature-corrected dilatonic black holes and black hole—string transition

  • Gravity, Astrophysics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We investigate extremal charged black hole solutions in the four-dimensional string frame Gauss-Bonnet gravity with the Maxwell field and the dilaton. Without curvature corrections, the extremal electrically charged dilatonic black holes have singular horizon and zero Bekenstein entropy. When the Gauss-Bonnet term is switched on, the horizon radius expands to a finite value provided curvature corrections are strong enough. Below a certain threshold value of the Gauss-Bonnet coupling the extremal black hole solutions cease to exist. Since decreasing Gauss-Bonnet coupling corresponds to decreasing string coupling g s , the situation can tentatively be interpreted as classical indication on the black hole—string transition. Previously the extremal dilaton black holes were studied in the Einstein-frame version of the Gauss-Bonnet gravity. Here we work in the string frame version of the theory with the S-duality symmetric dilaton function as required by the heterotic string theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Susskind, [arXiv:hep-th/9309145].

  2. G. T. Horowitz and J. Polchinski, Phys. Rev. D 55, 6189 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  3. J. M. Maldacena, [arXiv:hep-th/9607235].

  4. L. Cornalba, M. S. Costa, J. Penedones, and P. Vieira, J. High Energy Phys. 0612, 023 (2006); [arXiv:hepth/0607083].

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Giveon and D. Kutasov, J. High Energy Phys. 0701, 071 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  6. Th. Damour and G. Veneziano, Nucl. Phys. B 568, 93 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. R. R. Khuri, Phys. Lett. B 470, 73 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. A. Sen, J. High Energy Phys. 0505, 059 (2005); [arXiv:hep-th/0411255]; V. Hubeny, A. Maloney, and M. Rangamani, J. High Energy Phys. 0505, 035 (2005); [arXiv:hep-th/0411272].

    Article  ADS  Google Scholar 

  9. C. Chen, D. V. Gal’tsov, and D. G. Orlov, Phys. Rev. D 75, 084030 (2007); [arXiv:hep-th/0701004]; Phys. Rev. D 78, 104013 (2008); [arXiv:0809.1720].

    Google Scholar 

  10. D. J. Gross and E. Witten, Nucl. Phys. B 277, 1 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Sen, J. High Energy Phys. 0603, 008 (2006); [arXiv:hep-th/0508042].

    Article  ADS  Google Scholar 

  12. B. de Wit, Fortsch. Phys. 54, 183 (2006); [arXiv:hepth/0511261].

    Article  MATH  ADS  Google Scholar 

  13. T. Mohaupt, [arXiv:hep-th/0512048].

  14. P. Prester, J. High Energy Phys. 0602, 039 (2006); [arXiv:hep-th/0511306].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Sen, Mod. Phys. Lett. A 10, 2081 (1995); [arXiv:hepth/9504147]; J. High Energy Phys. 0509, 038 (2005); [arXiv:hep-th/0506177].

    Article  ADS  Google Scholar 

  16. G. Lopes Cardoso, B. de Wit, and T. Mohaupt, Nucl. Phys. B 567, 87 (2000); [arXiv:hep-th/9906094].

    Article  MATH  Google Scholar 

  17. J. A. Harvey and G. W. Moore, Phys. Rev. D 57, 2323 (1998); [arXiv:hep-th/9610237].

    Article  MathSciNet  ADS  Google Scholar 

  18. Nucl. Phys. B 298, 741 (1988).

  19. S. J. Poletti, J. Twamley, and D. L. Wiltshire, Class. Quant. Grav. 12, 1753 (1995); [Erratum-ibid. 12 (1995) 2355] [arXiv:hep-th/9502054].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Sen, Int. J. Mod. Phys. A 9, 3707 (1994); [arXiv:hepth/9402002].

    Article  MATH  ADS  Google Scholar 

  21. J. Harvey and J. Liu, Phys. Lett. B 268, 40 (1991).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Gal’tsov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gal’tsov, D.V., Davydov, E.A. Curvature-corrected dilatonic black holes and black hole—string transition. Jetp Lett. 89, 102–107 (2009). https://doi.org/10.1134/S0021364009030023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364009030023

PACS numbers

Navigation