Skip to main content
Log in

Carbon nanotube based bolometer

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The contacts of single carbon nanotubes and bundles of carbon nanotubes with superconducting and metallic electrodes are investigated in order to create bolometers and electron coolers. Tunneling contacts of the carbon nanotubes with aluminum electrodes are obtained. The current-voltage characteristics of junctions are analyzed for temperatures from room temperature to 300 mK. The resistance of individual nanotubes is primarily determined by defects and is too large for applications. The use of the bundles of carbon nanotubes makes it possible to considerably reduce the resistance of the bolometer, which is determined by a small number of conducting tubes with good tunneling contacts with the electrodes. The energy gap is equal to hundreds and tens of millivolt in the former and latter cases, respectively. Structures containing bundles of carbon nanotubes can be described in a model with a Schottky barrier. The samples with bundles of carbon nanotubes exhibit the bolometric response to external high-frequency radiation at a frequency of 110 GHz with an amplitude up to 100 μV and a temperature voltage response to 0.4 mV/K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Kuzmin, I. Devyatov, and D. Golubev, Proc. SPIE 3465, 193 (1998).

    ADS  Google Scholar 

  2. L. Kuzmin, I. Agulo, M. Fominsky, et al., Supercond. Sci. Technol. 17, 400 (2004).

    Article  ADS  Google Scholar 

  3. M. Tarasov, M. Fominsky, A. Kalabukhov, and L. Kuzmin, JETP Lett. 76, 507 (2002).

    Article  ADS  Google Scholar 

  4. I. Takesue, J. Haruyama, N. Kobayashi, et al., Phys. Rev. Lett. 96, 057001 (2006).

    Google Scholar 

  5. Y. Imry and R. Landauer, Rev. Mod. Phys. 71, 2 (1999).

    Article  Google Scholar 

  6. K. S. Yngvesson, Appl. Phys. Lett. 87, 043503 (2005).

    Google Scholar 

  7. http://www.fy.chalmers.se/atom/research/nanotubes/production.xml.

  8. S. Dittmer, J. Svensson, and E. Campbell, Curr. Appl. Phys. 4, 595 (2004).

    Article  Google Scholar 

  9. R. E. Morjan, M. S. Kabir, S. W. Lee, et al., Curr. Appl. Phys. 4, 591 (2004).

    Article  Google Scholar 

  10. K. S. Champlin and G. Eisenstein, IEEE Trans. Microwave Theory Tech. 26, 31 (1978).

    Article  ADS  Google Scholar 

  11. D. Tsang and S. Schwartz, Appl. Phys. Lett. 30, 263 (1977).

    Article  ADS  Google Scholar 

  12. M. Gaidis, H. Pickett, C. Smith, et al., IEEE Trans. Microwave Theory Tech. 48, 733 (2000).

    Article  Google Scholar 

  13. A. Savin, M. Prunnila, P. P. Kivinen, et al., Appl. Phys. Lett. 79, 1471 (2001).

    Article  ADS  Google Scholar 

  14. F. Vernon, M. Millea, M. Bottjer, et al., IEEE Trans. Microwave Theory Tech. 25, 286 (1977).

    Article  ADS  Google Scholar 

  15. M. Yang, K. Teo, W. Milne, and D. Hasko, Appl. Phys. Lett. 87, 253116 (2005).

    Google Scholar 

  16. M. Itkis, F. Borondics, A. Yu, and R. Haddon, Science 312, 413 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M. Tarasov, J. Svensson, J. Weis, L. Kuzmin, E. Campbell, 2006, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 84, No. 5. pp. 325–328.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasov, M., Svensson, J., Weis, J. et al. Carbon nanotube based bolometer. Jetp Lett. 84, 267–270 (2006). https://doi.org/10.1134/S0021364006170085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364006170085

PACS numbers

Navigation