Skip to main content
Log in

One possibility of determining the atomic structure of nanosized particles using diffuse-scattering data

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A method based on using the Fourier transform of finite functions has been developed to reconstruct the distribution function of interatomic vectors in a nanoparticle from x-ray diffuse scattering data. This distribution is similar to the Patterson function used in the structure analysis of single crystals. The method for determining the structure has been developed and verified for an actual cluster consisting of 36 atoms. The atomic cluster structure was previously determined in single crystals with the fluorite structure (Cd0.90Tb0.10F2.10. The vectors between heavy atoms are localized on the distribution of interatomic vectors and are used to construct superpositional synthesis. This synthesis yields the positions of the atoms in the nanoparticle. The method is also applicable to the nanocrystals with a limited number of unit cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Frey, Acta Crystallogr. B 51, 592 (1995).

    Article  Google Scholar 

  2. J. Krawczyk, A. Pietraszko, R. Kubiak, and K. Tukaszewicz, Acta Crystallogr. B 59, 384 (2003).

    Article  Google Scholar 

  3. B. J. Campbell, T. R. Welberry, R. W. Broach, et al., J. Appl. Crystallogr. 37, 187 (2004).

    Article  Google Scholar 

  4. I. Kaiser-Bischoff, H. Boysen, F. Frey, et al., J. Appl. Crystallogr. 38, 139 (2005).

    Article  Google Scholar 

  5. H. Kuppers, F. Liebau, and A. L. Spek, J. Appl. Crystallogr. 39, 338 (2006).

    Article  Google Scholar 

  6. Jianwel Miao, Pambos Charalambous, Janos Kirz, and David Sayre, Nature 400, 342 (1999).

    Article  ADS  Google Scholar 

  7. J. C. H. Spence, J. S. Wu, C. Giacovazzo, et al., Acta Crystallogr. A 59, 255 (2003).

    Article  Google Scholar 

  8. B. Carrozzini, G. L. Cascarano, L. De Caro, et al., Acta Crystallogr. A 60, 331 (2004).

    Article  Google Scholar 

  9. T. R. Welberry and B. D. Butler, J. Appl. Crystallogr. 27, 205 (1994).

    Article  Google Scholar 

  10. Th. Proffen and R. B. Neder, J. Appl. Crystallogr. 30, 171 (1997).

    Article  Google Scholar 

  11. U. K. Lukaszewicz, A. Pietraszko, and M. Kucharska, Acta Crystallogr. B 61, 473 (2005).

    Article  Google Scholar 

  12. M. J. Buerger, Vector Space and Its Application in Crystal-Structure Investigation (Wiley, New York, 1959; Inostrannaya Literatura, Moscow, 1961).

    MATH  Google Scholar 

  13. Computing in Crystallography, Ed. by R. Diamond, S. Ramaseshan, and K. Venkatesan (Indian Acad. Sci., Bangalore, 1980).

    Google Scholar 

  14. E. A. Ryzhova, V. N. Molchanov, A. A. Artynkhov, et al., Crystallogr. Rep. 49, 591 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Simonov, E.M. Burova, B.M. Shchedrin, 2006, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 84, No. 2, pp. 78–80.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonov, V.I., Burova, E.M. & Shchedrin, B.M. One possibility of determining the atomic structure of nanosized particles using diffuse-scattering data. Jetp Lett. 84, 73–75 (2006). https://doi.org/10.1134/S0021364006140062

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364006140062

PACS numbers

Navigation