Skip to main content
Log in

Optical Reflectometry, Metrology, and Sensing. Present and Future (Review)

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

The presented literature review was prepared by a team of authors united by the Program and Organizing Committees of the “Optical Reflectometry, Metrology, and Sensing” (ORMS) conference in 2023. It is intended to assess the state and prospects in this area for the coming years. The review covers the following topics: distributed acoustic sensors, fiber-optic measurement systems based on Brillouin scattering, research methods based on the principles of optical reflectometry in the frequency domain, and low-coherence approaches to distributed temperature and strain monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Kurtz, S., Haegel, N., Sinton, R., and Margolis, R., Nat. Photonics, 2017, vol. 11, p. 3. https://doi.org/10.1038/nphoton.2016.268

    Article  ADS  Google Scholar 

  2. Winzer, P.J., Neilson, D.T., and Chraplyvy, A.R., Opt. Express, 2018, vol. 26, p. 24190. https://doi.org/10.1364/OE.26.024190

    Article  ADS  Google Scholar 

  3. Liu, X., Science, 2019, vol. 22, p. 489. https://doi.org/10.1016/j.isci.2019.11.026

  4. Bourdine, A.V., Barashkin, A.Y., Burdin, V.A., Dashkov, M.V., Demidov, V.V., Dukelskii, K.V., Evtushenko, A.S., Ismail, Y., Khokhlov, A.V., Kuznetsov, A.A., Matrosova, A.S., Morozov, O.G., Pchelkin, G.A., Petruccione, F., Sakhabutdinov, A.Z., et al., Fibers, 2021, vol. 9, p. 27. https://doi.org/10.3390/fib9050027

    Article  Google Scholar 

  5. Burdin, V.V., Konstantinov, Yu.A., Claude, D. Latkin, K.P., Belokrylov, M.E., Krivosheev, A.I., and Tsibinogina, M.K., Instrum. Exp. Tech., 2021, vol. 64, no. 5, pp. 768–775. https://doi.org/10.1134/S0020441221050031

    Article  Google Scholar 

  6. Bobkov, K.K., Mikhailov, E.K., Zaushitsyna, T.S., Rybaltovsky, A.A., Aleshkina, S.S., Melkumov, M.A., Bubnov, M.M., Lipatov, D.S., Yashkov, M.V., Abramov, A.N., Umnikov, A.A., Guryanov, A.N., and Likhachev, M.E., J. Lightwave Technol., 2022, vol. 40, p. 6230. https://doi.org/10.1109/JLT.2022.3191862

  7. Ibrahim, A.A., Fouad, M.M., and Hamdi, A.A., Electronics, 2022, vol. 11, p. 3627. https://doi.org/10.3390/electronics11213627

    Article  Google Scholar 

  8. Liu, L. and Wang, L., in Multimedia Technology and Enhanced Learning, ICMTEL 2022, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Cham: Springer, 2022, vol. 446, p. 3. https://doi.org/10.1007/978-3-031-18123-8_1

  9. Stepanov, K.V., Zhirnov, A.A., Koshelev, K.I., Chernutsky, A.O., Khan, R.I., and Pnev, A.B., Sensors, 2021, vol. 21, p. 7077. https://doi.org/10.3390/s21217077

    Article  ADS  Google Scholar 

  10. Matveenko, V., Kosheleva, N., Serovaev, G., and Fedorov, A., Sensors, 2023, vol. 23, p. 410. https://doi.org/10.3390/s23010410

    Article  ADS  Google Scholar 

  11. Hussein, S.M., Sakhabutdinov, R.H., Morozov, O.G., Anfinogentov, V.I., Tupolev, A.N., Tunakova, J.A., Shagidullin, A.R., Kuznetsov, A.A., Lipatnikov, K.A., and Nasybullin, A.R., Karbala Int. J. Mod. Sci., 2022, vol. 8, no. 3, p. 2405. https://doi.org/10.33640/2405-609X.3243

    Article  Google Scholar 

  12. Anoshkin, A.N., Voronkov, A.A., Kosheleva, N.A., Matveenko, V.P., Serovaev, G.S., Spaskova, E.M., Shardakov, I.N., and Shipunov, G.S., Mech. Solids (Engl. Transl.), 2016, vol. 51, p. 542. https://doi.org/10.3103/S0025654416050058

  13. Hartog, A.H., Distributed Sensors in the Oil and Gas Industry, chap. 6 of Optical Fibre Sensors: Fundamentals for Development of Optimized Devices, Wiley-IEEE Press, 2020, https://doi.org/10.1002/9781119534730.ch6.

  14. Krivosheev, A.I., Barkov, F.L., Konstantinov, Yu.A., and Belokrylov, M.E., Instrum. Exp. Tech., 2022, vol. 65, no. 5, pp. 687–710. https://doi.org/10.1134/S0020441222050268

    Article  Google Scholar 

  15. Konstantinov, Y.A., Barkov, F.L., and Ponomarev, R.S., Int. J. Electr. Electron. Eng. Telecommun., 2022, vol. 11, no. 4, p. 249. https://doi.org/10.18178/ijeetc.11.4.249-261

    Article  Google Scholar 

  16. Tkachenko, A.Yu., Lobach, I.A., and Kablukov, S.I., Quantum Electron., 2019, vol. 49, p. 1121. https://doi.org/10.1070/QEL17165

    Article  ADS  Google Scholar 

  17. Gorshkov, B.G., Yüksel, K., Fotiadi, A.A., Wuilpart, M., Korobko, D.A., Zhirnov, A.A., Stepanov, K.V., Turov, A.T., Konstantinov, Y.A., and Lobach, I.A., Sensors, 2022, vol. 22, p. 1033. https://doi.org/10.3390/s22031033

    Article  ADS  Google Scholar 

  18. Belokrylov, M.E., Konstantinov, Yu.A., Latkin, K.P., Claude, D., Shcherbakova, V.A., Seleznev, D.A., Stepin, A.A., Konin, Yu.A., and Kashina, R.R., Instrum. Exp. Tech., 2020, vol. 63, no. 4, pp. 481–486. https://doi.org/10.1134/S0020441220050012

    Article  Google Scholar 

  19. Jiang, J., Xiong, J., Wang, Y., Wang, P., Zhang, J., Liang, Y., Sun, J., and Wang, Z., J. Lightwave Technol., 2022, vol. 40, no. 5, p. 5337. https://doi.org/10.1109/JLT.2022.3173624

    Article  ADS  Google Scholar 

  20. Sirin, S., Aldogan, K.Y., and Wuilpart, M., Opt. Fiber Technol., 2022, vol. 74, p. 103084. https://doi.org/10.1016/j.yofte.2022.103084

    Article  Google Scholar 

  21. Fu, Y., Xue, N., Wang, Z., Zhang, B., Xiong, J., and Rao, Y., J. Lightwave Technol., 2018, vol. 36, no. 4, p. 1069. https://doi.org/10.1109/JLT.2017.2768587

    Article  ADS  Google Scholar 

  22. Kocal, E.B., Wuilpart, M., and Yüksel, K., Opt. Fiber Technol., 2023, vol. 75, p. 103176. https://doi.org/10.1016/j.yofte.2022.103176

    Article  Google Scholar 

  23. Xue, N., Fu, Y., Lu, C., Xiong, J., Yang, L., and Wang, Z., J. Lightwave Technol., 2018, vol. 36, no. 23, p. 5481. https://doi.org/10.1109/jlt.2018.2875086

    Article  ADS  Google Scholar 

  24. Gorshkov, B.G., Alekseev, A.E., Simikin, D.E., Taranov, M.A., Zhukov, K.M., and Potapov, V.T., Sensors, 2022, vol. 22, p. 9482. https://doi.org/10.3390/s22239482

    Article  ADS  Google Scholar 

  25. Wang, Z., Zhang, B., Xiong, J., Fu, Y., Lin, S., Jiang, J., Chen, Y., Wu, Y., Meng, Q., and Rao, Y., IEEE Internet Things J., 2018, vol. 6, no. 4, p. 6117. https://doi.org/10.1109/JIOT.2018.2869474

    Article  Google Scholar 

  26. He, H., Zhao, Z., Fu, S., Liu, D., and Tang, M., Opt. Lett., 2022, vol. 47, p. 3403. https://doi.org/10.1364/OL.458100

    Article  ADS  Google Scholar 

  27. He, H., Wei, W., Zhao, Z., Fu, S., Liu, D., and Tang, M., Proc. Conference on Lasers and Electro-Optics, San Jose, CA, 2022, paper SF2F.7. https://doi.org/10.1364/CLEO_SI.2022.SF2F.7

  28. Zheng, H., Yan, Y., Zhao, Z., Zhu, T., Zhang, J., Guo, N., and Lu, C., IEEE Sens. J., 2021, vol. 21, no. 22, p. 25723. https://doi.org/10.1109/JSEN.2021.3117287

    Article  ADS  Google Scholar 

  29. Nordin, N.D., Abdullah, F., Zan, M.S.D., Bakar, A.A.A., Krivosheev, A.I., Barkov, F.L., and Konstantinov, Y.A., Sensors, 2022, vol. 22, p. 2677. https://doi.org/10.3390/s22072677

    Article  ADS  Google Scholar 

  30. Zan, M.S.D., Almoosa, A.S.K., Ibrahim, M.F., Elgaud, M.M., Hamzah, A.E., Arsad, N., Mokhtar, M.H.H., and Bakar, A.A.A., Opt. Fiber Technol., 2022, vol. 72, p. 102977. https://doi.org/10.1016/j.yofte.2022.102977

    Article  Google Scholar 

  31. Almoosa, A.S.K., Hamzah, A.E., Zan, M.S.D., Ibrahim, M.F., Arsad, N., and Elgaud, M.M., Opt. Fiber Technol., 2022, vol. 70, p. 102860. https://doi.org/10.1016/j.yofte.2022.102860

    Article  Google Scholar 

  32. Kuznetsov, A.G., Kharenko, D.S., Babin, S.A., Tsydenzhapov, I.B., and Shelemba, I.S., Quantum Electron., 2017, vol. 47, no. 10, p. 967. https://doi.org/10.1070/QEL16436

    Article  ADS  Google Scholar 

  33. Wang, Z., Gong, H., Xiong, M., and Zhang, J., Proc. 15th Int. Conference on Optical Communications and Networks (ICOCN), Hangzhou, 2016, p. 1. https://doi.org/10.1109/ICOCN.2016.7875804

  34. Minardo, A., Bernini, R., Ruiz-Lombera, R., Mirapeix, J., Lopez-Higuera, J.M., and Zeni, L., Opt. Express, 2016, vol. 24, p. 29994. https://doi.org/10.1364/oe.24.029994

    Article  ADS  Google Scholar 

  35. Mohamed, A.Y. and Nöther, N., Proc. 26th Int. Conference on Optical Fiber Sensors, Lausanne, 2018, paper TuE22. https://doi.org/10.1364/OFS.2018.TuE22

  36. Ruiz-Lombera, R., Minardo, A., Bernini, R., Mirapeix, J., Lopez-Higuera, J.M., and Zeni, L., Proc. SPIE, 2017, vol. 10323, p. 103238L. https://doi.org/10.1117/12.2265733

    Article  Google Scholar 

  37. Xing, Z., Shi, B., Zhu, H.H., Zhang, C.C., Wang, X., and Sun, M.Y., Geomech. Eng., 2021, vol. 24, no. 4, p. 337. https://doi.org/10.12989/GAE.2021.24.4.337

    Article  Google Scholar 

  38. Zhang, Q. and Xiong, Z., Shock Vib., 2018, vol. 2018, p. 6563537. https://doi.org/10.1155/2018/6563537

    Article  Google Scholar 

  39. Wosniok, A., Mizuno, Y., Krebber, K., and Nakamura, K., Proc. SPIE, 2013, vol. 8794, p. 879431. https://doi.org/10.1117/12.2025378

    Article  Google Scholar 

  40. Karapanagiotis, C., Hicke, K., Wosniok, A., and Krebber, K., Opt. Express, 2022, vol. 30, p. 12484. https://doi.org/10.1364/OE.453906

    Article  ADS  Google Scholar 

  41. Hartog, A., Frignet, B., Mackie, D., and Clark, M., Geophys. Prospect., 2014, vol. 62, special issue 4, p. 693. https://doi.org/10.1111/1365-2478.12141

  42. Parker, T., Shatalin, S., Farhadiroushan, M., and Miller, D.E., Proc. 2nd EAGE Workshop on Permanent Reservoir Monitoring 2013 - Current and Future Trends, Stavanger, July 2–5, 2013. https://doi.org/10.3997/2214-4609.20131303

  43. Liu, Q., Liu, T., He, T., Li, H., Yan, Z., Zhang, L., and Sun, Q., Opt. Express, 2021, vol. 29, no. 8, p. 11538. https://doi.org/10.1364/OE.412935

    Article  ADS  Google Scholar 

  44. Rena, L., Jianga, T., Jia, Z., Li, D., Yuan, C., and Li, H., Measurement, 2018, vol. 122, p. 57. https://doi.org/10.1016/j.measurement.2018.03.018

    Article  ADS  Google Scholar 

  45. Peng, Z., Jian, J., Wen, H., Gribok, A., Wang, M., Liu, H., Huang, S., Mao, Z.H., and Chen, K.P., Opt. Express, 2020, vol. 28, no. 19, p. 27277. https://doi.org/10.1364/OE.397509

    Article  ADS  Google Scholar 

  46. MacLeana, A., Morana, C., Johnstone, W., Culshaw, B., Marsh, D., and Parker, P., Sens. Actuators, A, 2003, vol. 109, nos. 1–2, p. 60. https://doi.org/10.1016/j.sna.2003.09.007

    Article  Google Scholar 

  47. Bakhoum, E.G., Zhang, C., and Cheng, M.H., Aerospace, 2020, vol. 7, no. 9, p. 125. https://doi.org/10.3390/aerospace7090125

    Article  Google Scholar 

  48. Chen, M., Li, B., Masoudi, A., Bull, D., and Barton, J.M., Proc. 2020 Int. Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Vientiane, 2020. https://doi.org/10.1109/ICITBS49701.2020.00030

  49. Li, Z., Zhang, J., Wang, M., Zhong, Y., and Peng, F., Opt. Express, 2020, vol. 28, no. 3, p. 2925. https://doi.org/10.1364/OE.28.002925

    Article  ADS  Google Scholar 

  50. Taylor, H.F. and Lee, C.E., US Patent 5194847, 1993.

  51. Wang, B., Mao, Y., Ashry, I., Al-Fehaid, Y., Al-Shawaf, A., Ng, T.K., Yu, C., and Ooi, B.S., Sensors, 2021, vol. 21, no. 5, p. 1592. https://doi.org/10.3390/s21051592

    Article  ADS  Google Scholar 

  52. Barnoski, M.K. and Jensen, S.M., Appl. Opt., 1976, vol. 15, no. 9, p. 2112. https://doi.org/10.1364/AO.15.002112

    Article  ADS  Google Scholar 

  53. Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B.T., Buric, M.P., and Ohodnicki, P.R., Appl. Phys. Rev., 2019, vol. 6, no. 4, p. 041302. https://doi.org/10.1063/1.5113955

    Article  ADS  Google Scholar 

  54. Agrawal, G.P., Nonlinear Fiber Optics, Academic, 2013.

    MATH  Google Scholar 

  55. Shimada, S., Coherent Lightwave Communications Technology, Springer Science and Business Media, 2012.

    Google Scholar 

  56. Hui, R. and O’Sullivan, M., Fiber Optic Measurement Techniques, Academic, 2009.

    Google Scholar 

  57. Bucaro, J.A., Dardy, H.D., and Carome, E.F., Appl. Opt., 1977, vol. 16, no. 7, p. 1761. https://doi.org/10.1364/AO.16.001761

    Article  ADS  Google Scholar 

  58. Palmieri, L. and Schenato, L., Open Opt. J., 2013, vol. 7, no. 1. https://doi.org/10.2174/1874328501307010104

  59. Laferrière, J., Lietaert, G., Taws, R., and Wolszczak, S., Reference Guide to Fiber Optic Testing, JDS Uniphase Corp., 2007.

    Google Scholar 

  60. Healey, P. and Malyon, D.J., Electron. Lett., 1982, vol. 20, no. 18, p. 862. https://doi.org/10.1049/el:19820585

    Article  ADS  Google Scholar 

  61. Lu, Y., Zhu, T., Chen, L., and Bao, X., J. Lightwave Technol., 2010, vol. 28, no. 22, p. 3243. https://doi.org/10.1109/JLT.2010.2078798

    Article  ADS  Google Scholar 

  62. Turov, A.T., Konstantinov, Yu.A., Belokrylov, M.E., and Maksimov, A.Yu., Foton-Ekspress, 2021, no. 6, p. 383. https://doi.org/10.24412/2308-6920-2021-6-383-384

  63. Xiong, J., Wang, Z., Wu, Y., Wu, H., and Rao, Y., Opt. Express, 2020, vol. 28, no. 24, p. 35844. https://doi.org/10.1364/OE.403951

    Article  ADS  Google Scholar 

  64. Tomboza, W., Guerrier, S., Awwad, E., and Dorize, C., IEEE Photonics Technol. Lett., 2021, vol. 33, no. 13, p. 645. https://doi.org/10.1109/LPT.2021.3084557

    Article  ADS  Google Scholar 

  65. Turov, A.T., Konstantinov, Yu.A., Belokrylov, M.E., and Maksimov, A.Yu., Prikl. Fotonika, 2021, vol. 8, no. 2, p. 33. https://doi.org/10.15593/2411-4367/2021.2.03

    Article  Google Scholar 

  66. Jiang, F., Lu, Z., Cai, F., Li, H., Zhang, Z., Zhang, Y., and Zhang, X., Sensors, 2019, vol. 19, no.17, p. 3753. https://doi.org/10.3390/s19173753

    Article  ADS  Google Scholar 

  67. Che, Q., Wen, H., Li, X., Peng, Z., and Chen, K.P., IEEE Access, 2019, vol. 7, p. 101758. https://doi.org/10.1109/ACCESS.2019.2931040

    Article  Google Scholar 

  68. Zhao, Y., Li, Y., and Wu, N., IEEE Trans. Geosci. Remote Sens., 2020, vol. 60, p. 1. https://doi.org/10.1109/TGRS.2020.3042202

    Article  Google Scholar 

  69. Yang, L., Fomel, S., Wang, S., Xiaohong, C., Wei, C., Omar, S., and Yangkang, C., Geophysics, 2022, vol. 88, no. 1, p. 1. https://doi.org/10.1190/geo2022-0138.1

    Article  Google Scholar 

  70. Kowarik, S., Hussels, M.-T., Chruscicki, S., Münzenberger, S., Lämmerhirt, A., Pohl, P., and Schubert, M., Sensors, 2020, vol. 20, no. 2, p. 450. https://doi.org/10.3390/s20020450

    Article  ADS  Google Scholar 

  71. Ashry, I., Wang, B., Mao, Y., Sait, M., Guo, Y., Al-Fehaid, Y., Al-Shawaf, A., Ng, T.K., and Ooi, B.S., Sensors, 2022, vol. 22, no. 17, p. 6491. https://doi.org/10.3390/s22176491

    Article  ADS  Google Scholar 

  72. Ding, Y., Tian, Y., Ozharar, S., Jiang, Z., and Wang, T., Proc. Conference “Optical Sensors 2022,” Vancouver, 2022, paper SM2C.7. https://doi.org/10.1364/SENSORS.2022.SM2C.7

  73. Berghmans, F., Dudley, J., Février, S., Geernaert, T., Genty, G., Gonzalez-Herraez, M., Hotoleanu, M., Kalli, K., Marhic, M., Sylvestre, T., Thévenaz, L., Tur, M., Webb, D., and Wuilpart, M., in Advanced Fiber Optics: Concepts and Technology, EPFL Press, 2011.

    Google Scholar 

  74. Motil, A., Bergman, A., and Tur, M., Opt. Laser Technol., 2016, vol. 78, p. 81. https://doi.org/10.1016/j.optlastec.2015.09.013

    Article  ADS  Google Scholar 

  75. Bao, X., Webb, D.J., and Jackson, D.A., Opt. Lett., 1993, vol. 18, no. 18, p. 1561. https://doi.org/10.1364/ol.18.001561

    Article  ADS  Google Scholar 

  76. Soto, M.A. and Thévenaz, L., Opt. Express, 2013, vol. 21, no. 25, p. 31347. https://doi.org/10.1364/OE.21.031347

    Article  ADS  Google Scholar 

  77. Urricelqui, J., Sagues, M., and Loayssa, A., Opt. Express, 2014, vol. 22, no. 15, p. 18195. https://doi.org/10.1364/OE.22.018195

    Article  ADS  Google Scholar 

  78. Feng, C., Preussler, S., Emad, J., and Schneider, T., Sensors, 2019, vol. 19, no. 13. https://doi.org/10.3390/s19132878

  79. Gyger, F., Yang, Z., Soto, M.A., Yang, F., Tow, K.H., and Thévenaz, L., Proc. 26th Int. Conference on Optical Fiber Sensors, Lausanne, 2018, paper ThE69. https://doi.org/10.1364/OFS.2018.ThE69

  80. Zhou, F., Gan, J., Lv, H., and Cui, L., IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 189, p. 032025, https://doi.org/10.1088/1755-1315/189/3/032025

  81. López-Gil, A., Domínguez-López, A., Martín-López, S., and Gonzalez-Herraez, M., Proc. 23rd Int. Conference on Optical Fibre Sensors, Santander, 2014. https://doi.org/10.1117/12.2059522

  82. Feng, C., Lu, X., Preussler, S., and Schneider, T., J. Lightwave Technol., 2019, vol. 37, no. 20, p. 5231. https://doi.org/10.1109/JLT.2019.2930919

    Article  ADS  Google Scholar 

  83. Farahani, M.A., Castillo-Guerra, E., and Colpitts, B.G., Opt. Lett., 2011, vol. 36, no. 21, p. 4275. https://doi.org/10.1364/OL.36.004275

    Article  ADS  Google Scholar 

  84. Xiao, Z., Yuan, Z., Zhang, Y., Huang, Y., Xi, L., Xu, S., Shan, L., and Li, X., Proc. Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020 (ACP/IPOC), Beijing, 2020, paper M4A.75. https://doi.org/10.1364/ACPC.2020.M4A.75

  85. Barkov, F.L., Konstantinov, Y.A., and Krivosheev, A.I., Fibers, 2020, vol. 8, no. 9, p. 60. https://doi.org/10.3390/fib8090060

    Article  Google Scholar 

  86. Haneef, S.M., Yang, Z., Thévenaz, L., Venkitesh, D., and Srinivasan, B., Opt. Express, 2018, vol. 26, no. 11, p. 14661. https://doi.org/10.1364/OE.26.014661

    Article  ADS  Google Scholar 

  87. Li, Y. and Wang, J., Opt. Fiber Technol., 2020, vol. 58, p. 102314. https://doi.org/10.1016/j.yoften.2020.102314

    Article  Google Scholar 

  88. Nordin, N.D., Zan, M.S.D., and Abdullah, F., Opt. Fiber Technol., 2020, vol. 58, p. 102298. https://doi.org/10.1016/j.yofte.2020.102298

    Article  Google Scholar 

  89. Wu, H., Wang, L., Zhao, Z., Shu, C., and Lu, C., IEEE Photonics J., 2018, vol. 10, no. 4, p 6802911. https://doi.org/10.1109/JPHOT.2018.2858235

    Article  Google Scholar 

  90. Smith, J., Brown, A., Merchant, M.D., and Bao, X., Opt. Commun., 1999, vol. 168, nos. 5–6, p. 393. https://doi.org/10.1016/S0030-4018(99)00366-1

    Article  ADS  Google Scholar 

  91. Bao, X., Brown, A., DeMerchant, M., and Smith, J., Opt. Lett., 1999, vol. 24, no. 8, p. 510. https://doi.org/10.1364/OL.24.000510

    Article  ADS  Google Scholar 

  92. Bao, X., Zhou, Z., and Wang, Y., PhotoniX, 2021, vol. 2, p. 14. https://doi.org/10.1186/s43074-021-00038-w

    Article  Google Scholar 

  93. Li, M., Xu, T., Wang, S., Hu, W., Jiang, J., and Liu, T., IET Optoelectron., 2022, vol. 16, special issue 6, p. 238. https://doi.org/10.1049/ote2.12081

  94. Bernini, R., Minardo, A., and Zeni, L., IEEE Photonics J., 2012, vol. 4, no. 1, p. 48. https://doi.org/10.1109/jphot.2011.2179024

    Article  ADS  Google Scholar 

  95. Li, W., Bao, X., Li, Y., and Chen, L., Opt. Express, 2008, vol. 16, no. 26, p. 21616. https://doi.org/10.1364/oe.16.021616

    Article  ADS  Google Scholar 

  96. Headley, C. and Agrawal, G.P., Raman Amplification in Fiber Optical Communication Systems, Elsevier, 2005. https://doi.org/10.1016/B978-0-12-044506-6.X5000-2

  97. Taki, M., Muanenda, Y., Oton, C.J., Nannipieri, T., Signorini, A., and Di Pasquale, F., Opt. Lett., 2013, vol. 38, no. 15, p. 2877. https://doi.org/10.1364/ol.38.002877

    Article  ADS  Google Scholar 

  98. Taki, M., Signorini, A., Oton, C.J., Nannipieri, T., and Di Pasquale, F., Opt. Lett., 2013, vol. 38, no. 20, p. 4162. https://doi.org/10.1364/OL.38.004162

    Article  ADS  Google Scholar 

  99. Wait, P.C. and Newson, T.P., Opt. Commun., 1996, vol. 122, nos. 4–6, p. 141. https://doi.org/10.1016/0030-4018(95)00557-9

    Article  ADS  Google Scholar 

  100. Li, A., Wang, Y., Fang, J., Li, M., Kim, B.Y., and Shieh, W., Opt. Lett., 2015, vol. 40, no. 7, p. 1488. https://doi.org/10.1364/OL.40.001488

    Article  ADS  Google Scholar 

  101. Hu, L., Sheng, L., Yan, J., Li, L., Yuan, M., Sun, F., Nian, F., Li, L., Liu, J., Zhou, S., and Liu, Z., Int. J. Opt., 2021, vol. 4, p. 1. https://doi.org/10.1155/2021/6610674

    Article  Google Scholar 

  102. Galindez, C., Madruga, F.J., and Lopez-Higuera, J.M., IEEE Photonics Technol. Lett., 2008, vol. 20, no. 23, p. 1959. https://doi.org/10.1109/lpt.2008.2005530

    Article  ADS  Google Scholar 

  103. Méndez, A. and Diatzikis, E., Proc. Conference “Optical Fiber Sensors 2006,” Cancun, 2006, paper ThE46. https://doi.org/10.1364/OFS.2006.ThE46

  104. Bilgen, M. and Günday, A., Proc. 13th Int. Conference on Electrical and Electronics Engineering (ELECO), Bursa, 2022. https://doi.org/10.23919/ELECO54474.2021.9677862

  105. Barkov, F., Konstantinov, Yu., Sycheva, S.D., Smetannikov, O., Smirnov, A.S., Burdin, V., Krivosheev, A.I., and Nosova, E., Quantum Electron., 2019, vol. 49, no. 5, p. 514. https://doi.org/10.1070/QEL16832

    Article  ADS  Google Scholar 

  106. Schenato, L., Appl. Sci., 2017, vol. 7, no. 9, p. 896. https://doi.org/10.3390/app7090896

    Article  Google Scholar 

  107. Ding, Z., Wang, C., Liu, K., Jiang, J., Yang, D., Pan, G., Pu, Z., and Liu, T., Sensors, 2018, vol. 18, no. 4, p. 1072. https://doi.org/10.3390/s18041072

    Article  ADS  Google Scholar 

  108. Ponomarev, R., Konstantinov, Y., Belokrylov, M., Lobach, I., and Shevtsov, D., Appl. Sci., 2021, vol. 11, no. 21, p. 9853. https://doi.org/10.3390/app11219853

    Article  Google Scholar 

  109. Tsifrovaya obrabotka signalov, glava 3: Tsifrovoi spektral’nyi analiz metodom DPF, Lektsiya 4 fevralya 2019 g. (Digital Signal Processing, chapter 3: Digital Spectral Analysis by the DFT Method, Lecture February 4, 2019), Moscow Institute of Physics and Technology, MIPT, 2019. https://kprf.mipt.ru/attachments/article/65/lektsiya_18_fevralya_2019.pdf.

  110. Window Smoothing Functions. https://ru.dsplib.org/content/windows/windows.html. Accessed January 15, 2023.

  111. Zhao, S., Cui, J., and Tan, J., Sensors, 2019, vol. 19, no. 17, p. 3660. https://doi.org/10.3390/s19173660

    Article  ADS  Google Scholar 

  112. Zhong, H., Fua, C., Wang, L., Du, B., Li, P., Meng, Y., Chen, L., Du, C., and Wang, Y., Opt. Lasers Eng., 2023, vol. 161, p. 107341. https://doi.org/10.1016/j.optlaseng.2022.107341

    Article  Google Scholar 

  113. Guo, Z., Han, G., Yan, J., Greenwood, D., Marco, J., and Yu, Y., Sensors, 2021, vol. 21, no. 14, p. 4632. https://doi.org/10.3390/s21144632

    Article  ADS  Google Scholar 

  114. Wang, F., Sun, Y., Chen, Q., Xing, J., Xia, Y., Zhang, Y., and Zhang, X., J. Lightwave Technol., 2022, vol. 40, no. 1, p. 269. https://doi.org/10.1109/JLT.2021.3119214

    Article  ADS  Google Scholar 

  115. Yuksel, K., Moeyaert, V., Megret, P., and Wuilpart, M., IEEE Sens. J., 2012, vol. 12, no. 5, p. 988. https://doi.org/10.1109/JSEN.2011.2167142

    Article  ADS  Google Scholar 

  116. Zhao, S., Cui, J., Wu, Z., Wang, Z., and Tan, J., J. Lightwave Technol., 2021, vol. 39, no. 12, p. 4101. https://doi.org/10.1109/jlt.2021.3055576

    Article  ADS  Google Scholar 

  117. Murayama, H., Igawa, H., Omichi, K., and Machijima, Y., Proc. 21st Int. Conference on Optical Fiber Sensors, Ottawa, 2021. https://doi.org/10.1117/12.886028

  118. Matveenko, V.P., Serovaev, G.S., Kosheleva, N.A., and Gusev, G.N., Procedia Struct. Integr., 2021, vol. 33, p. 925. https://doi.org/10.1016/j.prostr.2021.10.103

    Article  Google Scholar 

  119. Froggatt, M. and Moore, J., Appl. Opt., 1998, vol. 37, no. 10, p. 1735. https://doi.org/10.1364/ao.37.001735

    Article  ADS  Google Scholar 

  120. Imahama, M., Koyamada, Y., and Hogari, K., IEICE Trans. Commun., 2008, vol. E91-B, no. 4, p. 1243. https://doi.org/10.1093/ietcom/e91-b.4.1243

    Article  ADS  Google Scholar 

  121. Koyamada, Y., Imahama, M., Kubota, K., and Hogari, K., J. Lightwave Technol., 2009, vol. 27, no. 9, p. 1142. https://doi.org/10.1109/jlt.2008.928957

    Article  ADS  Google Scholar 

  122. Liehr, S., Münzenberger, S., and Krebber, K., Opt. Express, 2018, vol. 26, no. 8, p. 10573. https://doi.org/10.1364/oe.26.010573

    Article  ADS  Google Scholar 

  123. Liehr, S., Jäger, L.A., Karapanagiotis, C., Münzenberger, S., and Kowarik, S., Opt. Express, 2019, vol. 27, no. 5, p. 7405. https://doi.org/10.1364/oe.27.007405

    Article  ADS  Google Scholar 

  124. Gorshkov, B.G., Taranov, M.A., and Alekseev, A.E., Laser Phys., 2017, vol. 27, no. 8, p. 085105. https://doi.org/10.1088/1555-6611/aa792f

    Article  ADS  Google Scholar 

  125. Gorshkov, B.G. and Taranov, M.A., Laser Phys. Lett., 2018, vol. 15, no. 11, p. 115108. https://doi.org/10.1088/1612-202x/aad991

    Article  ADS  Google Scholar 

  126. Taranov, M.A., Gorshkov, B.G., and Alekseev, A.E., Instrum. Exp. Tech., 2020, vol. 63 no. 4, p. 527. https://doi.org/10.1134/S0020441220040181

    Article  Google Scholar 

  127. Taranov, M.A., Gorshkov, B.G., Alekseev, A.E., and Potapov, V.T., Appl. Opt., 2021, vol. 60, no. 11, p. 3049. https://doi.org/10.1364/ao.419837

    Article  ADS  Google Scholar 

  128. Gorshkov, B.G. and Taranov, M.A., Quantum Electron., 2018, vol. 48, no. 2, p. 184. https://doi.org/10.1070/QEL16541

    Article  ADS  Google Scholar 

  129. Gorshkov, B.G., Gorshkov, G.B., and Taranov, M.A., Laser Phys. Lett., 2016, vol. 14, no. 1, p. 015103. https://doi.org/10.1088/1612-202x/14/1/015103

    Article  ADS  Google Scholar 

Download references

Funding

Sections 1–3 were performed within the framework of State Contract no. AAAA-A19-119042590085-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kolesnichenko.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

INFORMATION ON THE CONTRIBUTIONS OF THE AUTHORS

А.Т. Turov, Section 1; F.L. Barkov, Sections 2, 3; Yu.A. Konstantinov, Section 3; М.А. Taranov, B.G. Gorshkov, A.E. Alekseev, Section 4; Zinan Wang, Zhiyong Zhao, Mohd Saiful Dzulkefly Zan, and E.V. Kolesnichenko, work with the text, proofing, and discussions.

Additional information

Translated by A. Seferov

International conference “Optical Reflectometry, Metrology, and Sensing 2023,ˮ Russia, Perm, May 24–26, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taranov, M.A., Gorshkov, B.G., Alekseev, A.E. et al. Optical Reflectometry, Metrology, and Sensing. Present and Future (Review). Instrum Exp Tech 66, 713–729 (2023). https://doi.org/10.1134/S0020441223050238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223050238

Navigation