Skip to main content
Log in

A Modification of the Backward Correlation Method for the Brillouin Frequency Shift Accurate Extraction

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

An improved method for extracting the Brillouin frequency shift in postprocessing of a given Brillouin gain spectrum is presented. Modification of the method made it possible to expand the boundaries of its applicability to the region of noisy spectra with a signal-to-noise ratio (SNR) below 0 dB. The modified method can be successfully used in distributed fiber-optic sensors operating on the Brillouin scattering principle, especially in long-distance sensing lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bao, X., Webb, D.J., and Jackson, D.A., Opt. Lett., 1993, vol. 18, p. 1561. https://doi.org/10.1364/OL.18.001561

    Article  ADS  Google Scholar 

  2. Soto, M.A. and Thévenaz, L., Opt. Express, 2013, vol. 21, p. 31347. https://doi.org/10.1364/OE.21.031347

    Article  ADS  Google Scholar 

  3. Feng, C., Preussler, S., Kadum, J., and Schneider, T., Sensors, 2019, vol. 19, p. 2878. https://doi.org/10.3390/s19132878

    Article  ADS  Google Scholar 

  4. Li, C., Lu, Y., Zhang, X., and Wang, F., Electron. Lett., 2012, vol. 48, no. 18, p. 1139. https://doi.org/10.1049/el.2012.1248

    Article  ADS  Google Scholar 

  5. Urricelqui, J., Sagues, M., and Loayssa, A., Opt. Express, 2014, vol. 22, no. 15, p. 18195. https://doi.org/10.1364/OE.22.018195

    Article  ADS  Google Scholar 

  6. Zhou, F., Gan, J., Lv, H., and Cui, L., IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 189, p. 032026. https://doi.org/10.1088/1755-1315/189/3/032026.

  7. Feng, C., Lu, X., Preussler, S., and Schneider, T., J. Lightwave Technol., 2019, vol. 37, p. 5231. https://doi.org/10.1109/JLT.2019.2930919

    Article  ADS  Google Scholar 

  8. Li, C. and Li, Y., Proc. 2009 5th Int. Conference on Wireless Communications, Networking and Mobile Computing, Beijing, 2009, p. 24. https://doi.org/10.1109/WICOM.2009.5303692.

  9. Yan, Z., Zhong, S., Lin, L., and Cui, Z., Mathematics, 2021, vol. 9, p. 2176. https://doi.org/10.3390/math9172176

    Article  Google Scholar 

  10. Amini, K. and Rostami, F., J. Comput. Appl. Math., 2015, vol. 288, p. 341. https://doi.org/10.1016/j.cam.2015.04.040

    Article  MathSciNet  Google Scholar 

  11. Horiguchi, T., Masui, Y., and Zan, M., Sensors, 2019, vol. 19, p. 1497. https://doi.org/10.3390/s19071497

    Article  ADS  Google Scholar 

  12. Farahani, M.A., Castillo-Guerra, E., and Colpitts, B.G., Opt. Lett., 2011, vol. 36, p. 4275. https://doi.org/10.1364/OL.36.004275

    Article  ADS  Google Scholar 

  13. Ruiz-Lombera, R., Fuentes, A., Rodriguez-Cobo, L., Lopez-Higuera, J.M., and Mirapeix, J., J. Lightwave Technol., 2018, vol. 36, p. 2114. https://doi.org/10.1109/JLT.2018.2805362

    Article  ADS  Google Scholar 

  14. Lalam, N., Venketeswaran, A., Lu, P., and Buric, M.P., in Optical Interconnects XXI, Schröder, H. and Chen, R.T., Eds., Bellingham, WA: SPIE, 2021, vol. 11692, p. 1169213. https://doi.org/10.1117/12.2578509.

  15. Wu, H., Wan, Y., Tang, M., Chen, Y., Zhao, C., Liao, R., Chang, Y., Fu, S., Shu, P.P., and Li, D., J. Lightwave Technol., 2019, vol. 37, p. 2648. https://doi.org/10.1109/JLT.2018.2876909

    Article  ADS  Google Scholar 

  16. Karapanagiotis, C., Wosniok, A., Hicke, K., and Krebber, K., Sensors, 2021, vol. 21, p. 2724. https://doi.org/10.3390/s21082724

    Article  ADS  Google Scholar 

  17. Nordin, N.D., Zan, M.S.D., and Abdullah, F., Photonics, 2020, vol. 7, p. 79. https://doi.org/10.3390/photonics7040079

    Article  Google Scholar 

  18. Nordin, N.D., Zan, M.S.D., and Abdullah, F., Opt. Fiber Technol., 2020, vol. 58, p. 102298. https://doi.org/10.1016/j.yofte.2020.102298

    Article  Google Scholar 

  19. Barkov, F.L., Konstantinov, Y.A., and Krivosheev, A.I., Fibers, 2020, vol. 8, p. 60. https://doi.org/10.3390/fib8090060

    Article  Google Scholar 

  20. Nordin, N.D., Abdullah, F., Zan, M.S.D., Bakar, A.A., Krivosheev, A.I., Barkov, F.L., and Konstantinov, Y.A., Sensors, 2022, vol. 22, p. 2677. https://doi.org/10.3390/s22072677

    Article  ADS  Google Scholar 

  21. Konstantinov, Yu.A., Kryukov, I.I., Pervadchuk, V.P., and Toroshin, A.Yu., Quantum Electron., 2009, vol. 39, no. 11, p. 1068. https://doi.org/10.1070/QE2009v039n11ABEH014171

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.I. Krivosheev for fruitful discussions and A.R. Davydov for his help in conducting statistical calculations when revealing the law of distribution of the noise spectral component.

Funding

This study was supported by the State Contract no. AAAA-A19-119042590085-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. Barkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Seferov

International Conference “Optical Reflectometry, Metrology, & Sensing,” Russia, Perm, May 24–26, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkov, F.L., Konstantinov, Y.A. A Modification of the Backward Correlation Method for the Brillouin Frequency Shift Accurate Extraction. Instrum Exp Tech 66, 753–760 (2023). https://doi.org/10.1134/S0020441223050044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223050044

Navigation