Skip to main content
Log in

Planar Michelson Interferometer Using Terahertz Surface Plasmons

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The optical scheme and technical characteristics of terahertz planar Michelson interferometer based on surface plasmons are presented. A technique for determination of the complex index of refraction of surface plasmons (\({{\tilde {n}}_{{\text{s}}}} = {{n}_{{\text{s}}}} + {\text{ }}i{{\kappa }_{{\text{s}}}}\)) from interferograms is described. The paper presents the results of test measurements on flat surfaces with gold sputtering coated by ZnS layers 0 to 3 μm thick with application of the high-power coherent radiation from the Novosibirsk free electron laser at the wavelength λ0 = 141 μm. From the measurement results, the value of the effective permittivity of the sputtered gold surface was found, which turned out to be an order of magnitude lower than that of crystalline gold. Analysis of the energy losses in the plasmonic interferometer made it possible to estimate its dynamic range (106–108 in terms of radiation power) required for measurements on samples with different \({{\tilde {n}}_{s}}\). Ways to increase the signal-to-noise ratio via optimization of the elements of the optical scheme and detector have also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bratman, V.L., Litvak, A.G., and Suvorov, E.V., Usp. Fiz. Nauk, 2011, vol. 181, no. 8, p. 867. https://doi.org/10.3367/UFNe.0181.201108f.0867

    Article  Google Scholar 

  2. Ghann, W. and Uddin, J., Terahertz Spectroscopy: A Cutting-Edge Technology, Uddin, J., Ed., London: IntechOpen, 2017.

    Google Scholar 

  3. O’Hara, J.F., Withayachumnankul, W., and Al-Naib, I., J. Infrared, Millimeter, Terahertz Waves, 2012, vol. 33, no. 3, p. 245. https://doi.org/10.1007/s10762-012-9878-x

    Article  Google Scholar 

  4. Hofmann, T., Herzinger, C.M., Boosalis, A., Tiwald, T.E., Woollam, J.A., and Schube, M., Rev. Sci. Instrum., 2010, vol. 81, p. 023101. https://doi.org/10.1063/1.3297902

  5. Azarov, I.A., Shvets, V.A., Prokopiev, V.Yu., Dulin, S.A., Rykhlitskii, S.V., Kruchinin, V.N., Choporova, Yu.Yu., Knyazev, B.A., and Kruchinina, M.V., Instrum. Exp. Tech., 2015, vol. 58, no. 3, p. 381. https://doi.org/10.1134/S0020441215030033

    Article  Google Scholar 

  6. Naftaly, M. and Dudley, R., Appl. Opt., 2011, vol. 50, no. 9, p. 3201. https://doi.org/10.1364/AO.50.003201

    Article  ADS  Google Scholar 

  7. Poverkhnostnye polyaritony. Elektromagnitnye volny na poverkhnostyakh i granitsakh razdela sred (Surface Polaritons. Electromagnetic Waves on Surfaces and Media Boundaries), Agranovich, V.M. and Mills, D.L., Eds., Moscow: Nauka, 1985.

    Google Scholar 

  8. Maier, S.A., PlasmonicsFundamentals and Applications, New York: Springer, 2007.

    Book  Google Scholar 

  9. Nikitin, A.K. and Tishchenko, A.A., Pis’ma Zh. Tekh. Fiz., 1991, vol. 17, no. 11, p. 76.

    Google Scholar 

  10. Huang, Y.H., Ho, H.P., Wu, S.Y., and Kong, S.K., Adv. Opt. Technol., 2012, vol. 2012, p. 471957. https://doi.org/10.1155/2012/908976

  11. Silin, V.I., Voronov, S.A., Yakovlev, V.A., and Zhizhin, G.N., Int. J. Infrared Millimeter Waves, 1989, vol. 10, no. 1, p. 101. https://doi.org/10.1007/BF01009121

    Article  ADS  Google Scholar 

  12. Wang, K. and Mittleman, D.M., Phys. Rev. Lett., 2006, vol. 96, p. 157401. https://doi.org/10.1103/PhysRevLett.96.157401

  13. Gao, Y., Xin, Z., Gan, Q., Cheng, X., and Bartoli, F.J., Opt. Express, 2013, vol. 21, no. 5, p. 5859. https://doi.org/10.1364/OE.21.005859

    Article  ADS  Google Scholar 

  14. Melentiev, P.N., Kuzin, A.A., Gritchenko, A.S., Kalmykov, A.S., and Balykin, V.I., Opt. Commun., 2017, vol. 382, p. 509. https://doi.org/10.1016/j.optcom.2016.07.061

    Article  ADS  Google Scholar 

  15. Gan, Q.Q., Gao, Y., and Bartoli, F.J., Opt. Express, 2009, vol. 17, no. 23, p. 20747. https://doi.org/10.1364/OE.17.020747

    Article  ADS  Google Scholar 

  16. Ming, Y., Wu, Z., Wu, H., Xu, F., and Lu, Y., IEEE Photonics J., 2012, vol. 4, no. 1, p. 491. https://doi.org/10.1109/JPHOT.2012.2186562

    Article  ADS  Google Scholar 

  17. Schlesinger, Z. and Sievers, A.J., Appl. Phys. Lett., 1980, vol. 36, no. 6, p. 409. https://doi.org/10.1063/1.91519

    Article  ADS  Google Scholar 

  18. Hanssen, L.M., Riffe, D.M., and Sievers, A.J., Opt. Lett., 1986, vol. 11, no. 12, p. 782. https://doi.org/10.1364/OL.11.000782

    Article  ADS  Google Scholar 

  19. Petrov, Yu.E., Alieva, E.V., Zhizhin, G.N., and Yakovlev, V.A., Zh. Tekh. Fiz., 1998, vol. 68, no. 3, p. 64.

    Google Scholar 

  20. Ma, Y., Nguyen-Huu, N., Zhou, J., Maeda, H., Wu, Q., Eldlio, M., Pistora, J., and Cada, M., IEEE J. Sel. Top. Quantum Electron., 2017, vol. 23, no. 4, p. 4601607. https://doi.org/10.1109/JSTQE.2017.2660882

  21. Handbook of Optical Constants of Solids, Palik, E.D., Ed., Academic, 2016, vol. 1.

    Google Scholar 

  22. Pandey, S., Gupta, B., Chanana, A., and Nahata, A., Adv. Phys., 2016, vol. 1, no. 2, p. 176. https://doi.org/10.1080/23746149.2016.1165079

    Article  Google Scholar 

  23. Zhizhin, G.N., Nikitin, A.K., Balashov, A.A., and Ryzhova, T.A., RF Patent 2318192, Byull. Izobret., 2008, no. 6.

  24. Bogomolov, G.D., Zhizhin, G.N., Kiryanov, A.P., Nikitin, A.K., and Khitrov, O.V., Bull. Rus. Acad. Sci.: Phys., 2009, vol. 73, no. 4, p. 533. https://doi.org/10.3103/S1062873809040224

    Article  Google Scholar 

  25. Nikitin, A.K., Knyazev, B.A., Gerasimov, V.V., and Khasanov, I.Sh., RF Patent 2653590, Byull. Izobret., 2018, no. 14.

  26. Zhizhin, G.N., Kiryanov, A.P., and Nikitin, A.K., Opt. Spectrosc., 2012, vol. 112, no. 4, p. 545. https://doi.org/10.1134/S0030400X12040248

    Article  ADS  Google Scholar 

  27. Gerasimov, V.V., Knyazev, B.A., Nikitin, A.K., Nikitin, V.V., and Rijova, T.A., Discrete and Continuous Models and Applied Computational Science, 2013, no. 2, p. 191. https://journals.rudn.ru/miph/article/view/8543.

  28. Gerasimov, V.V., Knyazev, B.A., and Nikitin, A.K., Quantum Electron., 2017, vol. 47, no. 1, p. 65. https://doi.org/10.1070/QEL16178

    Article  ADS  Google Scholar 

  29. Gerasimov, V.V., Nikitin, A.K., Lemzyakov, A.G., Azarov, I.A., Milekhin, I.A., Knyazev, B.A., Bezus, E.A., Kadomina, E.A., and Doskolovich, L.L., J. Opt. Soc. Am. B, 2020, vol. 37, no. 5, p. 1461. https://doi.org/10.1364/JOSAB.386331

    Article  ADS  Google Scholar 

  30. Nikitin, A.K. and Khitrov, O.V., RF Patent 2709600, Byull. Izobret., 2019, no. 35.

  31. Gerasimov, V.V., Nikitin, A.K., Khitrov, O.V., and Lemzyakov, A.G., Proc. 6th Int. Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Chengdu, August 29–September 3, 2021, p. 1. https://doi.org/10.1109/IRMMW-THz50926.2021.9567134.

  32. Shevchenko, O.A., Vinokurov, N.A., Arbuzov, V.S., Chernov, K.N., Davidyuk, I.V., Deichuly, O.I., Dementyev, E.N., Dovzhenko, B.A., Getmanov, Ya.V., Gorbachev, Ya.I., Knyazev, B.A., Kolobanov, E.I., Kondakov, A.A., Kozak, V.R., Kozyrev, E.V., et al., Bull. Rus. Acad. Sci.: Phys., 2019, vol. 83, p. 228. https://doi.org/10.3103/S1062873819020278

    Article  Google Scholar 

  33. Stegeman, G.I., Wallis, R.F., and Maradudin, A.A., Opt. Lett., 1983, vol. 8, no. 7, p. 386. https://doi.org/10.1364/OL.8.000386

    Article  ADS  Google Scholar 

  34. Kotelnikov, I.A., Gerasimov, V.V., and Knyazev, B.A., Phys. Rev. A, 2013, vol. 87, p. 023828. https://doi.org/10.1103/PhysRevA.87.023828

  35. Islam, M.S., Nine, J., Sultana, J., Cruz, A.L.S., Dinovitser, A., Ng, B.W., Ebendorff-Heidepriem, H., Losic, D., and Abbott, D., IEEE Access, 2020, vol. 8, p. 97204. https://doi.org/10.1109/ACCESS.2020.2996278

    Article  Google Scholar 

  36. Nazarov, M., Garet, F., Armand, D., Shkurinov, A., and Coutaz, J.-L., C. R. Phys., 2008, vol. 9, p. 232. https://doi.org/10.1016/j.crhy.2008.01.004

    Article  ADS  Google Scholar 

  37. Knyazev, B.A. and Nikitin, A.K., RF Patent 2547164, Byull. Izobret., 2015, no. 10.

  38. Knyazev, B.A., Gerasimov, V.V., Nikitin, A.K., Azarov, I.A., and Choporova, Yu.Yu., J. Opt. Soc. Am. B, 2019, vol. 36, p. 1684. https://doi.org/10.1364/JOSAB.36.001684

    Article  ADS  Google Scholar 

  39. Gerasimov, V.V., Knyazev, B.A., Nikitin, A.K., and Nikitin, V.V., Tech. Phys. Lett., 2010, vol. 36, no. 11, p. 1016. https://doi.org/10.1134/S1063785010110131

    Article  ADS  Google Scholar 

  40. Zayats, A.V., Smolyaninov, I.I., and Maradudin, A.A., Phys. Rep., 2005, vol. 408, p. 131. https://doi.org/10.1016/j.physrep.2004.11.001

    Article  ADS  Google Scholar 

  41. Gerasimov, V.V., Knyazev, B.A., Lemzyakov, A.G., Nikitin, A.K., and Zhizhin, G.N., J. Opt. Soc. Am. B, 2016, vol. 33, p. 2196. https://doi.org/10.1364/JOSAB.33.002196

    Article  ADS  Google Scholar 

  42. Minin, I.V. and Minin, O.V., Vestn. SGUGIT (Sib. Gos. Univ. Geosist. Tekhnol.), 2022, vol. 26, no. 4, p. 160. https://doi.org/10.33764/2411-1759-2021-26-4-160-175

    Article  Google Scholar 

  43. http://www.tydexoptics.com/ru/products/thz_devices/golay_cell/.

  44. http://www.nzpp.ru/product/gotovye-izdeli/fotopriemnye-ustroystva/.

  45. Paulish, A.G., Dorozhkin, K.V., Gusachenko, A.V., Morozov, A.O., and Pyrgaeva, S.M., Sbornik trudov konferentsii “Aktual’nye problemy radiofiziki APR 2019” (Proc. Conference “Topical Problems on Radio-Physics APR 2019”), Tomsk, 2019, p. 482. http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000709334.

  46. Zubov, V.A., Metody izmereniya kharakteristik lazernogo izlucheniya (Methods for Measuring Characteristics of Laser Emission), Moscow: Nauka, 1973.

  47. Kubarev, V.V., Kulipanov, G.N., Kolobanov, E.I., Matveenko, A.N., Medvedev, L.E., Ovchar, V.K., Salikova, T.V., Scheglov, M.A., Serednyakov, S.S., and Vinokurov, N.A., Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 603, p. 25. https://doi.org/10.1016/j.nima.2008.12.122

    Article  Google Scholar 

  48. Handbook: Physical Data, Grigoryev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

    Google Scholar 

  49. Mathar, R.J., J. Opt. A: Pure Appl. Opt., 2007, vol. 9, p. 470. https://doi.org/10.1088/1464-4258/9/5/008

    Article  ADS  Google Scholar 

  50. Burke, J.J., Stegeman, G.I., and Tamir, T., Phys. Rev. B, 1986, vol. 33, no. 8, p. 5186. https://doi.org/10.1103/PhysRevB.33.5186

    Article  ADS  Google Scholar 

  51. Ordal, M.A., Long, L.L., Bell, R.J., Bell, S.E., Bell, R.R., Alexander, R.W., and Ward, C.A., Appl. Opt., 1983, vol. 22, p. 1099. https://doi.org/10.1364/AO.22.001099

    Article  ADS  Google Scholar 

  52. Jiu Zhi-Xian, Zuo Du-Luo, Miao Liang, Qi Chun-Chao, and Cheng Zu-Hai, Chin. Phys. Lett., 2010, vol. 27, p. 024211. https://doi.org/10.1088/0256-307X/27/2/024211

  53. Kozlov, G. and Volkov, A., in Topics in Applied Physics, vol. 74: Millimeter and Submillimeter Wave Spectroscopy of Solids, Grüner, G., Ed., Berlin, Heidelberg: Springer, 2007. https://doi.org/10.1007/BFb0103420

    Book  Google Scholar 

  54. Idehara, T., Sabchevski, S.P., Glyavin, M., and Mitsudo, S., Appl. Sci., 2020, vol. 10, p. 980. https://doi.org/10.3390/app10030980

    Article  Google Scholar 

  55. Wen, B. and Ban, D., Prog. Quantum Electron., 2021, vol. 80, p. 100363. https://doi.org/10.1016/j.pquantelec.2021.100363

  56. Kubarev, V.V., Doctoral Sci. (Phys.-Math.) Dissertation, Novosibirsk: Budker Institute of Nuclear Physics Siberian Branch Russ. Acad. Sci., 2016.

Download references

ACKNOWLEDGMENTS

The work was done at the shared research center SSTRC on the basis of the Novosibirsk FEL at BINP SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Gerasimov.

Ethics declarations

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, V.V., Nikitin, A.K. & Lemzyakov, A.G. Planar Michelson Interferometer Using Terahertz Surface Plasmons. Instrum Exp Tech 66, 423–434 (2023). https://doi.org/10.1134/S0020441223030053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223030053

Navigation