We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Large-Bandwidth High-Gain Low-Noise Transimpedance Amplifier for Scanning Tunneling Microscope

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

In this work, a design of large-bandwidth high-gain low-noise transimpedance amplifier (TIA) for scanning tunneling microscope (STM) is proposed. The simulations show that the proposed TIA has the bandwidth higher than 200 kHz, two orders of magnitude higher than those of conventional commercial TIAs for STM. At low frequencies, the noises of the proposed TIA are almost the same as the conventional commercial ones with the same transimpedance gain. At high frequencies, its calculated input equivalent noise voltage power spectral density (PSD) is 40 nV2/Hz and its input equivalent noise current PSD is 3.2 fA2/Hz at 10 kHz. The corresponding values are 23 nV2/Hz and 88 fA2/Hz at 100 kHz. The STM with the proposed TIA can meet the needs of fast high-quaility STM imaging measurements and fast high-energy-resolution scanning tunneling spectra measurements for the low-conducting materials, such as complex organic systems and wide bandgap semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Li, Q.F., Wang, Q., Hou, Y.B., and Lu, Q.Y., Rev. Sci. Instrum., 2012, vol. 83, p. 043706. https://doi.org/10.1063/1.3703568

    Article  ADS  Google Scholar 

  2. Hou, Y.B., Wang, J.H., and Lu, Q.Y., Rev. Sci. Instrum., 2008, vol. 79, p. 113707. https://doi.org/10.1063/1.3005484

    Article  ADS  Google Scholar 

  3. Ding, Y.Q., Wang, X.Y., Xie, L., Yao, X.Y., and Xu, W., Chem. Commun., 2018, vol. 54, p. 9259. https://doi.org/10.1039/c8cc03585g

    Article  Google Scholar 

  4. Im, J.O., Sen, S., Lindsay, S., and Zhang, P.M., ACS Nano, 2018, vol. 12, p. 7067. https://doi.org/10.1021/acsnano.8b02819

    Article  Google Scholar 

  5. Ding, Y.Q., Xie, L., Yao, X.Y., and Xu, W., Chem. Commun., 2018, vol. 54, p. 3715. https://doi.org/10.1039/c8cc01134f

    Article  Google Scholar 

  6. Li, D.L., Sun, L.Y., Ding, Y.Q., Liu, M.X., Xie, L., Liu, Y.F., Shang, L.N., Wu, Y.F., Jiang, H.J., Chi, L.F., Qiu, X.H., and Xu, W., ACS Nano, 2021, vol. 15, p. 16896. https://doi.org/10.1021/acsnano.1c07842

    Article  Google Scholar 

  7. Zhuang, X.Y., Wu, Q., Zhang, A.H., Liao, L.X., and Fang, B.S., Chin. J. Chem. Eng., 2021, vol. 30, p. 212. https://doi.org/10.1016/j.cjche.2020.10.031

    Article  Google Scholar 

  8. Liao, C.C. and Yau, S.L, Langmuir, 2022, vol. 38, p. 2495. https://doi.org/10.1021/acs.langmuir.1c02943

    Article  Google Scholar 

  9. Carla, M., Lanzi, L., and Pallecchi, E., Rev. Sci. Instrum., 2004, vol. 75, no. 2, p. 497. https://doi.org/10.1063/1.1641159

    Article  ADS  Google Scholar 

  10. Umbach, C.C. and Blakely, J.M., Appl. Surf. Sci., 2001, vols. 175–176, p. 746. https://doi.org/10.1016/S0169-4332(01)00110-6

    Article  ADS  Google Scholar 

  11. Data sheet of FEMTO DE-DLPCA-200 Variable Gain Low Noise Current Amplifier. https://www.femto.de/images/pdfdokumente/de-dlpca-200.pdf.;

  12. Data Sheet of FEMTO DELCA-200-10G Ultra-Low-Noise Current Amplifier. https://www.femto.de/images/pdfdokumente/de-lca-200-10g.pdf.

  13. Data Sheet of OPA657 OPA. https://www.ti.com.cn/ cn/lit/ds/symlink/opa657.pdf.

  14. Franco, S., Design with Operational Amplifiers and Analog Integrated Circuits, McGraw-Hill, 2002.

    Google Scholar 

  15. TINA-TI is SPICE-Based Analog Simulation Program Produced by Texas Instruments Inc. https://www.ti. com/tool/TINA-TI.

  16. Data Sheet of THS4021 OPA. https://www.ti.com/lit/ ds/symlink/ths4021.pdf.

  17. Michel, B., Novotny, L., and Dürig, U., Ultramicroscopy, 1992, vols. 42–44, p. 1647. https://doi.org/10.1016/0304-3991(92)90499-A

    Article  Google Scholar 

  18. Liang, Y.X., Ultramicroscopy, 2022, vol. 234, p. 13466. https://doi.org/10.1016/j.ultramic.2022.113466

    Article  Google Scholar 

  19. Qian, Z.H., J. Northeast Norm. Univ., Nat. Sci. Ed., 2003, vol. 35, no. 2, p. 41. https://doi.org/10.3321/j.issn:1000-1832.2003.02.008

    Article  Google Scholar 

  20. van der Ziel, A., Noise in Solid State Devices and Circuits, New York: Wiley-Interscience, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Xin Liang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, YX. Large-Bandwidth High-Gain Low-Noise Transimpedance Amplifier for Scanning Tunneling Microscope. Instrum Exp Tech 66, 350–357 (2023). https://doi.org/10.1134/S0020441223020264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223020264

Navigation