Skip to main content
Log in

Comparative Study of IDC Sensor’s Geometrical Effect, Performance, and Frequency Behaviour with Water Level Detection

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Fringe field capacitive sensors with interdigitated electrodes allow non-invasive measurements. The design of the fringing electric field and analytical characteristics of four different geometrical shaped capacitive sensors for water level measurement have been covered in this work. The work aims to explore the effect of the geometrical shape of IDC sensors, compare the performance of all the designed sensors, characterize their frequency behaviour and establish the best suitable sensor for water level measurement. All statistical calculations were undertaken for the goodness of fit for the proposed sensor’s model. The experiments were performed in the laboratory by immersing the sensor inside the container containing still tap water. The result obtained was promising since the measurement of all the proposed sensors fitted the experimental data for a measured frequency range with a satisfactory determination of the coefficient of the R-square value. Archimedean spiral sensor performance is found to be best at all statistical criteria (R-square > 0.99, percent NRMSE < 1.56, standard deviation, and uniformity) for the level measurement. The experimental report shows that the sensitivity of the spiral sensor is 0.0533 to 0.055 nF/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.

REFERENCES

  1. Kazkaz, G., Francke, R.C., and Beiermann, B.S., US Patent 6634229, 2003.

  2. Vogt, M., Proc. 2018 IEEE MTT-S Int. Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, April 15, 2018, p. 1. https://doi.org/10.1109/ICMIM.2018.8443505.

  3. Park, K.W. and Kim, H.C., Proc. TENCON 2015— 2015 IEEE Region 10 Conference, Macao, November 1, 2015, p. 1. https://doi.org/10.1109/TENCON.2015.7372925.

  4. Ameen, O.F., Younus, M.H., Aziz, M.S., Azmi, A.I., Ibrahim, R.R., and Ghoshal, S.K., Sens. Actuators, A, 2016, vol. 252, p. 225. https://doi.org/10.1016/j.sna.2016.10.018

    Article  Google Scholar 

  5. Molina-Reyes, J., IEEE Sens. J., 2017, vol. 18, no. 1, p. 231. https://doi.org/10.1109/JSEN.2017.2754958

    Article  ADS  Google Scholar 

  6. Kumar, B., Rajita, G., and Mandal, N., Meas. Control, 2014, vol. 47, no. 7, p. 219. https://doi.org/10.1177/0020294014546943

    Article  Google Scholar 

  7. Bera, S.C., Mandal, H., Saha, S., and Dutta, A., IEEE Trans. Instrum. Meas., 2013, vol. 63, no. 3, p. 641. https://doi.org/10.1109/TIM.2013.2282194

    Article  ADS  Google Scholar 

  8. Paul, J. and Philip, J., AIP Conf. Proc., 2020, vol. 2263, no. 1, p. 040004. https://doi.org/10.1063/5.0017009

  9. Alley, G.D., IEEE Trans. Microwave Theory Tech., 1970, vol. 18, no. 12, p. 1028.

    Article  ADS  Google Scholar 

  10. Kim, J.W., Development of Interdigitated Capacitor Sensors for Direct and Wireless Measurements of the Dielectric Properties of Liquids, Austin, TX: Univ. of Texas at Austin, 2008.

    Google Scholar 

  11. Li, X.B., Larson, S.D., Zyuzin, A.S., and Mamishev, A.V., Conference Record of the 2004 IEEE Int. Symposium on Electrical Insulation, Indianapolis, IN, September 19, 2004, p. 406. https://doi.org/10.1109/ELINSL.2004.1380616.

  12. Noltingk, B.E., J. Phys. E: Sci. Instrum., 1969, vol. 2, p. 356.

    Article  ADS  Google Scholar 

  13. Wang, H.C., Zyuzin, A., and Mamishev, A.V., IEEE Sens. J., 2013, vol. 14, no. 1, p. 68. https://doi.org/10.1109/JSEN.2013.2279991

    Article  ADS  Google Scholar 

  14. Gao, X., Zhao, Y., and Ma, H., Sensors, 2018, vol. 18, no. 9, p. 3034. https://doi.org/10.3390/s18093034

    Article  ADS  Google Scholar 

  15. Baxter, L.K., Capacitive Sensors, Wiley, 1997.

    Google Scholar 

  16. Ali, S.F. and Mandal, N., IEEE Sens. J., 2019, vol. 19, no. 13, p. 5179. https://doi.org/10.1109/JSEN.2019.2903296

    Article  ADS  Google Scholar 

  17. Manut, A., Zoolfakar, A.S., Muhammad, N.A., and Zolkapli, M., Proc. 2011 IEEE Regional Symposium on Micro and Nano Electronics, Kota Kinabalu, September 28, 2011, p. 359. https://doi.org/10.1109/RSM.2011.6088360.

  18. Majid, H.A., Razali, N., Sulaiman, M.S., and A’ain, A.K., World Acad. Sci., Eng. Technol., 2009, vol. 55, p. 636. https://doi.org/10.5281/zenodo.1075258

    Article  Google Scholar 

  19. Goswami, M.P., Montazer, B., and Sarma, U., IEEE Trans. Instrum. Meas., 2018, vol. 68, no. 3, p. 913. https://doi.org/10.1109/TIM.2018.2855538

    Article  Google Scholar 

  20. McIntosh, R.B. and Casada, M.E., IEEE Sens. J., 2008, vol. 8, no. 3, p. 240. https://doi.org/10.1109/JSEN.2007.913140

    Article  ADS  Google Scholar 

  21. Fukushima, Y., Fukuma, M., Hirose, M., Sugiyama, K.I., Kawami, M., Yoshino, K., Kishida, S., and Lee, S.S., Proc. 2018 IEEE Sensors, New Delhi, October 28, 2018, p. 1. https://doi.org/10.1109/ICSENS.2018.8589737

  22. Sundara-Rajan, K., Byrd, L., and Mamishev, A.V., IEEE Sens. J., 2004, vol. 4, no. 3, p. 378. https://doi.org/10.1109/JSEN.2004.824230

    Article  ADS  Google Scholar 

  23. Chetpattananondh, P., Thongpull, K., and Chetpattananondh, K., Comput. Electron. Agric., 2017, vol. 142, p. 545. https://doi.org/10.1016/j.compag.2017.11.016

    Article  Google Scholar 

  24. Bord, I., Tardy, P., and Menil, F., Sens. Actuators, B, 2006, vol. 114, no. 2, p. 640. https://doi.org/10.1016/j.snb.2005.06.049

    Article  Google Scholar 

  25. Chen, Z. and Luo, R.C., IEEE Trans. Ind. Electron., 1998, vol. 45, no. 6, p. 886. https://doi.org/10.1109/41.735332

    Article  Google Scholar 

  26. Sample, A.P., Yeager, D.J., and Smith, J.R., Proc. 2009 IEEE Int. Conference on RFID, Orlando, FL, April 27, 2009, p. 103. https://doi.org/10.1109/RFID.2009.4911212.

  27. Dewarrat, F., Falco, L., Caduff, A., Talary, M.S., Feldman, Y., and Puzenko, A., IEEE Trans. Dielectr. Electr. Insul., 2008, vol. 15, no. 5, p. 1406. https://doi.org/10.1109/TDEI.2008.4656250

    Article  Google Scholar 

  28. Steele, J.J., Fitzpatrick, G.A., and Brett, M.J., IEEE Sens. J., 2007, vol. 7, no. 6, p. 955. https://doi.org/10.1109/JSEN.2007.897363

    Article  ADS  Google Scholar 

  29. Lazarus, N., Bedair, S.S., Lo, C.C., and Fedder, G.K., J. Microelectromech. Syst., 2009, vol. 19, no. 1, p. 183. https://doi.org/10.1109/JMEMS.2009.2036584

    Article  Google Scholar 

  30. Isono, Y. and Aoyagi, S., Proc. TRANSDUCERS 2007-2007 Int. Solid-State Sensors, Actuators and Microsystems Conference, Lyon, June 10, 2007, p. 1219. https://doi.org/10.1109/SENSOR.2007.4300356.

  31. Hayt, W.H., Jr., Engineering Electromagnetics, New York: McGraw-Hill, 1981.

    Google Scholar 

  32. Santhosh, K.V., Joy, B., and Rao, S., J. Sens., 2020, vol. 2020, p. 4259509. https://doi.org/10.1155/2020/4259509

  33. Rao, G.S. and Narayana, K.V., Int. J. Electr. Eng. Inf., 2021, vol. 13, no. 2, p. 418. https://doi.org/10.15676/ijeei.2021.13.2.10

    Article  Google Scholar 

  34. Mizuguchi, J., Piai, J.C., de França, J.A., de Morais França, M.B., Yamashita, K., and Mathias, L.C., IEEE Trans. Instrum. Meas., 2014, vol. 64, no. 1, p. 212. https://doi.org/10.1109/TIM.2014.2335911

    Article  ADS  Google Scholar 

  35. Chakraborty, M., Kalita, A., and Biswas, K., IEEE Trans. Instrum. Meas., 2018, vol. 68, no. 1, p. 189. https://doi.org/10.1109/TIM.2018.2838758

    Article  ADS  Google Scholar 

  36. Ye, Y., Deng, J, Shen, S., Hou, Z., and Liu, Y., Sensors, 2016, vol. 16, no. 5, p. 699. https://doi.org/10.3390/s16050699

    Article  ADS  Google Scholar 

  37. Ren, Z. and Yang, W., IEEE Sens. J., 2015, vol. 15, no. 5, p. 3037. https://doi.org/10.1109/JSEN.2014.2383491

    Article  ADS  Google Scholar 

  38. Islam, T. and Maurya, O.P., Proc. 2019 IEEE 16th India Council Int. Conference (INDICON), Rajkot, December 13, 2019, p. 1. https://doi.org/10.1109/INDICON47234.2019.9029048.

  39. Gong, C.S., Chiu, H.K., Huang, L.R., Lin, C.H., Hsu, Z.D., and Tu, P.H., IEEE Sens. J., 2016, vol. 16, no. 9, p. 2896. https://doi.org/10.1109/JSEN.2016.2524696

    Article  ADS  Google Scholar 

  40. Jin, B., Zhang, Z., and Zhang, H., Sens. Actuators, A, 2015, vol. 223, p. 84. https://doi.org/10.1016/j.sna.2014.12.027

    Article  Google Scholar 

  41. Li, Y.T., Chao, C.M., and Wang, K., Proc. 2011 6th IEEE Int. Conference on Nano/Micro Engineered and Molecular Systems, Kaohsiung, February 20, 2011, p. 847. https://doi.org/10.1109/NEMS.2011.6017486

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Ranjan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, P., Chowdhury, A. Comparative Study of IDC Sensor’s Geometrical Effect, Performance, and Frequency Behaviour with Water Level Detection. Instrum Exp Tech 66, 315–323 (2023). https://doi.org/10.1134/S0020441223020215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223020215

Navigation