Skip to main content
Log in

Photoactivation Approach to the Determination of Long-lived Nickel Isotopes in NPP Structural Materials

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

A photoactivation method has been developed for determining the activity of long-lived nickel isotopes by the 60Co activity in metallic structural materials of a reactor core. The error of this method is 5–10%, and the sensitivity is 0.5 Bq/g if semiconductor γ-ray spectrometers with high-purity germanium detectors are used. Following the proposed approach, it is possible to significantly simplify the identification, testing, and certification of metallic structural materials at the stage of reactor decommissioning as well as to significantly reduce the cost of these works compared to the radiochemical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. NP (Federal Rules and Regulations) no. NP-001-15: General Provisions for Nuclear Power Plant Safety Assurance, Moscow: Rostekhnadzor, 2015.

  2. IAEA Safety Standards, Safety of Nuclear Power Plants Design, Specific Safety Requirements, No SSR-2/1 (Rev.1), Vienna: International Atomic Energy Agency, 2016.

  3. The Interface between Safety and Security at Nuclear Power Plants, INSAG-24, A Report by the International Nuclear Safety Group, Vienna: International Atomic Energy Agency, 2010.

  4. Decommissioning of Facilities, General Safety Requirements, IAEA Safety Standards Series no. GSR Part 6, STI/PUB/1652: 978-92-0-404515-4, Vienna: International Atomic Energy Agency, 2015.

  5. Belyaev, L.A., Vorob’ev, A.V., Gavrilov, P.M., Gvozdyakov, D.V., and Gubin, V.E., Toplivo i materialy yadernoi tekhniki. Uchebnoe posobie (Fuel and Materials for Nuclear Technique. Student’s Book), Tomsk: Izd-vo Tomsk Polytechnic Univ., 2010.

  6. Design of Instrumentation and Control Systems for Nuclear Power Plants, Specific Safety Guide, IAEA Safety Standards Series No. SSG-39, STI/PUB/1694: 978-92-0-102815-0, Vienna: International Atomic Energy Agency, 2016.

  7. Construction for Nuclear Installations, Specific Safety Guide, IAEA Safety Standards Series No. SSG-38, STI/PUB/1693: 978-92-0-102715-3, Vienna: International Atomic Energy Agency, 2015.

  8. Design of the Reactor Core for Nuclear Power Plants, Safety Guide, IAEA Safety Standards Series No. NS-G-1.12, STI/PUB/1221: 92-0-116004-6, Vienna: International Atomic Energy Agency, 2005.

  9. Tarasikov, V.P. and Solov’ev, V.A., Vliyanie neitronnogo oblucheniya na fiziko-mekhanicheskie svoistva stalei i splavov otechestvennykh yadernykh reaktorov (Effect of Neutron Radiation on Physical and Mechanical Properties of Steels and Alloys for Indigenous Nuclear Reactors), Moscow: Fizmatlit, 2020.

  10. Bondar’kov, M.D., Maksimenko, A.M., Vishnevskii, I.N., et al., Bull. Rus. Acad. Sci.: Phys., 2009, vol. 73, no. 2, p. 266. https://doi.org/10.3103/S1062873809020312

    Article  Google Scholar 

  11. Long-Lived Activation Products in Reactor Materials, NUREG/CR-3474, Richland, WA: Pacific Northwest Laboratory.

  12. Zhemzhurov, M.L., Zhmura, G.M., Rubin, I.E., Serebryanyi, G.Z., Dneprovskaya, N.M., Tetereva, N.A., Rudenkov, I.V., and Babichev, L.F., Izv. Nats. Akad. Nauk Belarusi, Ser. Fiz.-Tekh. Nauk, 2021, vol. 66, no. 3, p. 365. https://doi.org/10.29235/1561-8358-2021-66-3-365-377

    Article  Google Scholar 

  13. Zheltonozhskaya, M.V., Zheltonozhsky, V.A., Myznikov, D.E., et al., Developing a way of processing complex X-ray and gamma spectra in the range of low energies, Bull. Rus. Acad. Sci.: Phys., 2021, vol. 85, no. 10, p. 1446. https://doi.org/10.3103/S1062873821100270

    Article  Google Scholar 

  14. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, vol. 506, no. 3, p. 250. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  15. Zheltonozhskaya, M.V., Zheltonozhsky, V.A., Lykova, E.N., Chernyaev, A.P., and Iatsenko, V.N., Nucl. Instrum. Methods Phys. Res., Sect. B, 2020, vol. 470, p. 38. https://doi.org/10.1016/j.nimb.2020.03.002

    Article  Google Scholar 

  16. Brajnik, D., Jamnik, D., Kernel, G., Korun, M., Miklavžič, U., Pucelj, B., and Stanovnik, A., Phys. Rev. C, 1976, vol. 13, p. 1852. https://doi.org/10.1103/PhysRevC.13.1852

    Article  ADS  Google Scholar 

  17. Brualla, L., Rodriguez, M., Sempau, J., and Andreo, P., Radiat. Oncol., 2019, vol. 14, p. 6. https://doi.org/10.1186/s13014-018-1186-8

    Article  Google Scholar 

  18. Zheltonozhsky, V.A. and Savrasov, A.M., Nucl. Instrum. Methods Phys. Res., Sect. B, 2019, vol. 456, p. 116. https://doi.org/10.1016/j.nimb.2019.06.029

    Article  Google Scholar 

  19. Firestone, R., Table of Isotopes, New York: Wiley Interscience, 1996.

    Google Scholar 

  20. Utsunomiya, H., Renstrøm, T., Tveten, G.M., Goriely, S., Katayama, S., Ariizumi, T., Takenaka, D., Symochko, D., Kheswa, B.V., Ingeberg, V.W., Glodariu, T., Lui, Y.-W., Miyamoto, S., Larsen, A.C., Midtbø, J.E., et al., Phys. Rev. C, 2018, vol. 98, p. 054619. https://doi.org/10.1103/PhysRevC.98.054619

    Article  ADS  Google Scholar 

  21. Ishkhanov, B.S., Kapitonov, I.M., Piskarev, I.M., Shevchenko, V.G., and Shevchenko, O.P., Yad. Fiz., 1970, vol. 11, no. 3, p. 485.

    Google Scholar 

  22. Davydov, M.G., Khamraev, F.S., and Shomurodov, É.M., Sov. At. Energy, 1987, vol. 63, p. 545. https://doi.org/10.1007/BF01125155

    Article  Google Scholar 

  23. Stogov, Yu.V., Osnovy neitronnoi fiziki. Uchebnoe posobie (Fundamentals for Neutron Physics. Student’s Book), Moscow: Moscow Engineering Physics Institute, 2008.

  24. Ancius, D., Remeikis, V., Plukis, A., Plukiene, R., Ridikas, D., and Cometto, M., Nukleonika, 2005, vol. 50, no. 3, p. 113.

    Google Scholar 

  25. Kopecky, J., Atlas of Neutron Capture Cross Sections, Vienna: International Atomic Energy Agency, 1997.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank I.E. Vlasova, Senior Researcher at the Radiochemistry Department of Moscow State University, for her help in analyzing the elemental composition of the samples.

Funding

This study was supported by the Russian Science Foundation (project no. 22-29-01013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zheltonozhskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheltonozhskaya, M.V., Chernyaev, A.P., Yusyuk, D.A. et al. Photoactivation Approach to the Determination of Long-lived Nickel Isotopes in NPP Structural Materials. Instrum Exp Tech 66, 285–292 (2023). https://doi.org/10.1134/S0020441223010281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223010281

Navigation