Skip to main content
Log in

Experimental Study on Temperature, Soot Volume Fraction Distributions, and Self-Absorption Effect of a Laminar Diffusion Flame

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

In this paper, an axisymmetric ethylene laminar diffusion flame generated with 194 mL/min ethylene and 284 L/min air flow is experimentally investigated. A hyperspectral imaging device was used to capture radiation images at multiple wavelengths. In order to reduce errors caused by the data capturing time difference, the device was placed on its side, thereby making the data that was at the same height away from the fuel nozzle captured almost at the same time. The radiation transfer process was iteratively reconstructed while considering the self-absorption effect, and using a method that searched the temperature which had an inversely fitted spectral line closest to the reconstructed one. Moreover, a method that traces discrete radiation beams and records energy absorbed during transfer for quantitatively analyzing the self-absorption effect is also proposed. Analysis was also conducted. Results show that, at the flame root, the main reaction takes place beyond the areas right above the fuel nozzle. As height increases, the most violent reaction areas move inside. Quite a lot of soot aggregates exist in the flame center of the upper part of the flame. The self-absorption effect has more influence on the areas with lower temperatures and higher soot volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Snelling, D.R., Thomson, K.A., Smallwood, G.J., Gülder, Ő.L., Weckman, E.J., and Fraser, R.A., AIAA J., 2002, vol. 40, no 9, p. 1789. https://doi.org/10.2514/2.1855

    Article  ADS  Google Scholar 

  2. Huang, Q.X., Wang, F., Liu, D., Ma, Z.Y., Yan, J.H., Chi, Y., and Cen K.F., Combust. Flame, 2009, vol. 156, no. 3, p. 565. https://doi.org/10.1016/j.combustflame.2009.01.001

    Article  Google Scholar 

  3. De Iuliis, S., Barbini, M., Benecchi, S., Cignoli, F., and Zizak, G., Combust. Flame, 1998, vol. 115, no. 1, p. 253. https://doi.org/10.1016/S0010-2180(97)00357-X

    Article  Google Scholar 

  4. Lou, C. and Zhou, H.C., Numer. Heat Transfer, Part A, 2009, vol. 56, no. 2, p. 153. https://doi.org/10.1080/10407780903107246

    Article  ADS  Google Scholar 

  5. Lou, C., Chen, C., Sun, Y., and Zhou, H., Sci. China: Technol. Sci., 2010, vol. 53, no. 8, p. 2129. https://doi.org/10.1007/s11431-010-3212-4

    Article  ADS  Google Scholar 

  6. Huang, Q., Wang, F., Yan, J., and Chi, Y., Appl. Opt., 2012, vol. 51, no. 15, p. 2968. https://doi.org/10.1364/OL.43.001103

    Article  ADS  Google Scholar 

  7. Yan, W. and Lou, C., Exp. Therm. Fluid Sci., 2013, vol. 50, p. 229. https://doi.org/10.1016/j.expthermflusci.2013.05.013

    Article  Google Scholar 

  8. Ni, M., Zhang, H., Wang, F., Xie, Z., Huang, Q., Yan, J., and Cen, K., Appl. Therm. Eng., 2016, vol. 96, p. 421. https://doi.org/10.1016/j.applthermaleng.2015.11.116

    Article  Google Scholar 

  9. Qi, D.H., Chen, B., Zhang, D., and Lee, C.F., J. Energy Inst., 2016, vol. 89, no. 4, p. 807. https://doi.org/10.1016/j.joei.2015.03.007

    Article  Google Scholar 

  10. Yan, W., Zheng, S., and Zhou, H., Appl. Therm. Eng., 2017, vol. 124, p. 1014. https://doi.org/10.1016/j.applthermaleng.2017.06.087

    Article  Google Scholar 

  11. Guo, Z., Song, Y., Yuan, Q., Wulan, T., and Chen, L., Opt. Commun., 2017, vol. 393, p. 123. https://doi.org/10.1016/j.optcom.2017.02.043

    Article  ADS  Google Scholar 

  12. Liu, G. and Liu, D., Int. J. Heat Mass Transfer, 2018, vol. 124, p. 564. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.064

    Article  Google Scholar 

  13. Liu, G. and Liu, D., Int. J. Heat Mass Transfer, 2018, vol. 118, p. 1080. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.084

    Article  Google Scholar 

  14. Chan, Q.N., Fattah, I.M.R., Zhai, G., Yip, H.L., Chen, T.B.Y., Yuen, A.C.Y., Yang, W., Wehrfritz, A., Dong, X., Kook, S., and Yeoh, G.H., J. Energy Inst., 2019, vol. 92, no. 6, p. 1968. https://doi.org/10.1016/j.joei.2018.10.015

    Article  Google Scholar 

  15. Kim, H.M., Kim, M.S., Lee, G.J., Yoo, Y.J., and Song, Y.M., Opt. Express, 2019, vol. 27, no. 4, p. 4435. https://doi.org/10.1364/OE.27.004435

    Article  ADS  Google Scholar 

  16. Huang, X., Qi, H., Niu, C., Ruan, L., Tan, H., Sun, J., and Xu, C., Appl. Therm. Eng., 2017, vol. 115, p. 1337. https://doi.org/10.1016/j.applthermaleng.2016.12.029

    Article  Google Scholar 

  17. Zhao, W., Zhang, B., Xu, C., Duan, L., and Wang, S., IEEE Sens. J., 2017, vol. 18, no. 2, p. 528. https://doi.org/10.1109/jsen.2017.2772899

    Article  ADS  Google Scholar 

  18. Li, S.-N., Yuan, Y., Liu, B., Wang, F.-Q., and Tan, H.-P., Opt. Commun., 2018, vol. 410, p. 40. https://doi.org/10.1016/j.optcom.2017.09.055

    Article  ADS  Google Scholar 

  19. Li, T.-J., Li, S.-N., Yuan, Y., Wang, F.-Q., and Tan, H.-P., Int. J. Heat Mass Transfer, 2018, vol. 119, p. 303. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.122

    Article  Google Scholar 

  20. Sun, J., Hossain, M.M., Xu, C.-L., Zhang, B., and Wang, S.-M., Opt. Commun., 2017, vol. 390, p. 7. https://doi.org/10.1016/j.optcom.2016.12.056

    Article  ADS  Google Scholar 

  21. Liu, H., Zheng, S., and Wang, T., IET Renewable Power Gener., 2019, vol. 13, no. 11, p. 1833. https://doi.org/10.1049/iet-rpg.2019.0119

    Article  Google Scholar 

  22. Liu, H., Zheng, S., Zhou, H., and Qi, C., Meas. Sci. Technol., 2015, vol. 27, no. 2, p. 025201. https://doi.org/10.1088/0957-0233/27/2/025201

    Article  ADS  Google Scholar 

  23. Liu, H., Zheng, S., and Zhou, H., IEEE Trans. Instrum. Meas., 2017, vol. 66, no. 2, p. 315. https://doi.org/10.1109/TIM.2016.2631798

    Article  ADS  Google Scholar 

  24. Chang, H. and Charalampopoulos, T., Proc. R. Soc. A, 1990, vol. 430, p. 577. https://doi.org/10.1098/rspa.1990.0107

    Article  ADS  Google Scholar 

  25. Liu, H., Zhou, H., and Xu, C., Meas. Sci. Technol., 2020, vol. 31, no. 11, p. 115202. https://doi.org/10.1088/1361-6501/ab9dbf

    Article  ADS  Google Scholar 

  26. Liu, G. and Liu, D., J. Quant. Spectrosc. Radiat. Transfer, 2018, vol. 212, p. 149. https://doi.org/10.1016/j.jqsrt.2018.04.003

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foundation of China (nos. 52106219, 51827808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawei Liu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Liu, H. Experimental Study on Temperature, Soot Volume Fraction Distributions, and Self-Absorption Effect of a Laminar Diffusion Flame. Instrum Exp Tech 66, 177–185 (2023). https://doi.org/10.1134/S0020441223010244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223010244

Navigation