Skip to main content
Log in

Laboratory-Constructed Instrumentation for the Characterization of First and Higher-order Harmonics of Dynamic Susceptibility: A Low Cost AC Susceptometer

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

AC susceptibility offers a very useful tool to probe spin dynamics in magnetic materials, superconductors, spin glasses, etc. A home built low cost AC susceptometer proved to be a useful setup to study such materials in an economic way. In this paper, we present the design and fabrication of a low field ac susceptibility measuring instrument (home-built) working down to liquid nitrogen temperature. This instrument offers susceptibility measurement in the frequency range of 1 Hz to 100 kHz and AC field up to 10 Oe. Moreover, in addition to first order, higher-order susceptibility can also be measured as a function of temperature, frequency, and field. Calibration has been done with Gd2O3. Measurement has been made on different samples to check the correctness of the data and presented in the last section of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Hein, R.A., Francavilla, T.L., and Liebenberg, D.H., Magnetic Susceptibility of Superconductors and Other Spin Systems, Boston: Springer, 1991.

    Book  Google Scholar 

  2. Balanda, M., Acta Phys. Pol., A, 2013, vol. 124, no. 6, p. 964. https://doi.org/10.12693/APhysPolA.124.964

    Article  ADS  Google Scholar 

  3. Mulder, C.A.M., van Duyneveldt, A.J., and Mydosh, J.A., Phys. Rev. B, 1981, vol. 23, no. 3, p. 1384. https://doi.org/10.1103/PhysRevB.23.1384

    Article  ADS  Google Scholar 

  4. Dekker, C., Arts, A.F.M., de Wijn, H.W., van Duyneveldt, A.J., and Mydosh, J.A., Phys. Rev. B, 1989, vol. 40, no. 16, p. 11243. https://doi.org/10.1103/PhysRevB.40.11243

    Article  ADS  Google Scholar 

  5. Jonsson, T., Jonason, K., Jnsson, P., and Nordblad, P., Phys. Rev. B, 1999, vol. 59, no. 13, p. 8770. https://doi.org/10.1103/PhysRevB.59.8770

    Article  ADS  Google Scholar 

  6. Ishida, T. and Goldfarb, R.B., Phys. Rev. B, 1990, vol. 41, no. 13, p. 8937. https://doi.org/10.1103/PhysRevB.41.8937

    Article  ADS  Google Scholar 

  7. Pramanik, A.K. and Banerjee, A., Phys. Rev. B, 2010, vol. 81, p. 024431. https://doi.org/10.1103/PhysRevB.81.024431

    Article  ADS  Google Scholar 

  8. Postulka, L., Eibisch, P., Holzmann, A., Wolf, B., and Lang, M., Rev. Sci. Instrum., 2019, vol. 90, p. 033901. https://doi.org/10.1063/1.5046475

    Article  ADS  Google Scholar 

  9. Westerkamp, T., Deppe, M., Kuchler, R., Brando, M., Geibel, C., Gegenwart, P., Pikul, A.P., and Steglich, F., Phys. Rev. Lett., 2009, vol. 102, p. 206404-1. https://doi.org/10.1103/PhysRevLett.102.206404

    Article  ADS  Google Scholar 

  10. Matsuoka, T., Debessai, M., Hamlin, J.J., Gangopadhyay, A.K., and Schilling, J.S., Phys. Rev. Lett., 2008, vol. 100, p. 197003. https://doi.org/10.1103/PhysRevLett.100.197003

    Article  ADS  Google Scholar 

  11. Nakamine, G., Kinjo, K., Kitagawa, S., Ishida, K., Tokunaga, Y., Sakai, H., Kambe, S., Nakamura, A., Shimizu, Y., Homma, Y., Li, D., Honda, F., and Aoki D., Phys. Rev. Lett., 2021, vol. 103, p. L100503. https://doi.org/10.1103/PhysRevB.103.L100503

    Article  ADS  Google Scholar 

  12. Daptary, G.N., Sow, C., Anil Kumar, P.S., and Bid, A., Phys. Rev. B, 2014, vol. 90, p. 1151531. https://doi.org/10.1103/PhysRevB.90.1151531

    Article  Google Scholar 

  13. Kumar, R., Yanda, P., and Sundaresan, A., Phys. Rev. B, 2021, vol. 103, p. 214427. https://doi.org/10.1103/PhysRevB.103.214427

    Article  ADS  Google Scholar 

  14. Prando, G., Carretta, P., Wolter, A.U.B., Saint-Martin, R., Revcolevschi, A., and Buchner, B., Phys. Rev. B, 2014, vol. 90, p. 085111. https://doi.org/10.1103/PhysRevB.90.085111

    Article  ADS  Google Scholar 

  15. Lhotel, E., Paulsen, C., Dalmas de Reotier, P., Yaouanc, A., Marin, C., and Vanishri, S., Phys. Rev. B, 2012, vol. 86, p. 020410. https://doi.org/10.1103/PhysRevB.86.020410

    Article  ADS  Google Scholar 

  16. Ehlers, G., Ritter, C., Stewart, J.R., Hillier, A.D., and Maletta, H., Phys. Rev. B, 2007, vol. 75, p. 024420. https://doi.org/10.1103/PhysRevB.75.024420

    Article  ADS  Google Scholar 

  17. Pohlit, M., Muscas, G., Chioar, I.-A., Stopfel, H., Ciuciulkaite, A., Ostman, E., Pappas, S.D., Stein, A., Hjorvarsson, B., Joson, P.E., and Kapaklis, V., Phys. Rev. B, 2020, vol. 101, p. 134404. https://doi.org/10.1103/PhysRevB.101.134404

    Article  ADS  Google Scholar 

  18. Bannenberg, L.J., Lefering, A.J.E., Kakurai, K., Onose, Y., Endoh, Y., Tokura, Y., and Pappas, C., Phys. Rev. B, 2016, vol. 94, p. 134433. https://doi.org/10.1103/PhysRevB.94.134433

    Article  ADS  Google Scholar 

  19. Marcano, N., Algarabel, P.A., Barqun, L.F., Araujo, J.P., Pereira, A.M., Belo, J.H., Magn, C., Morelln, L., and Ibarra, M.R., Phys. Rev. B, 2019, vol. 99, p. 054419. https://doi.org/10.1103/PhysRevB.99.054419

    Article  ADS  Google Scholar 

  20. Madduri, P.V.P., Sen, S., Giri, B., Chakrabartty, D., Manna, S.K., Parkin, S.S.P., and Nayak, A.K., Phys. Rev. B, 2020, vol. 102, p. 174402. https://doi.org/10.1103/PhysRevB.102.174402

    Article  ADS  Google Scholar 

  21. Prando, G., Carretta, P., De Renzi, R., Sanna, S., Grafe, H.-J., Wurmehl, S., and Buchner, B., Phys. Rev. B, 2012, vol. 85, p. 144522. https://doi.org/10.1103/PhysRevB.85.144522

    Article  ADS  Google Scholar 

  22. Nair, S. and Nigam, A.K., Phys. Rev. B, 2007, vol. 75, p. 214415. https://doi.org/10.1103/PhysRevB.75.214415

    Article  ADS  Google Scholar 

  23. Drobac, D., Marohnic, Z., Zivkovic, I., and Prester, M., Rev. Sci. Instrum., 2013, vol. 84, p. 054708. https://doi.org/10.1063/1.4807752

    Article  ADS  Google Scholar 

  24. Martien, D., Introduction to AC Susceptibility, San Diego, CA: Quantum Design Inc., 2000. https://www.qdusa.com/siteDocs/appNotes/1078-201.pdf.

    Google Scholar 

  25. Galluzzi, A., Buchkov, K., Tomov, V., Nazarova, E., Leo, A., Grimaldi, G., Pace, S., and Polichetti, M., Supercond. Sci. Technol., 2020, vol. 33, p. 094006. https://doi.org/10.1088/1361-6668/aba354

    Article  ADS  Google Scholar 

  26. Wada, K. and Takayama, H., Prog. Theor. Phys.,1980, vol. 64, no. 1, p. 327. https://doi.org/10.1143/PTP.64.327

    Article  ADS  Google Scholar 

  27. Banerjee, A., Bajpai, A., Nair, S., in Frontiers in Magnetic Materials, Narlikar, N.V., Ed., Berlin: Springer, 2005, pp. 43–69.

    Google Scholar 

  28. Mydosh, J.A., Spin Glasses: An Experimental Introduction, London: Taylor, 1993.

    Google Scholar 

  29. Maeda, M., Asai, T., Komatsubara, T., Yamamura, T., and Kimura, N., Prog. Nucl. Sci. Technol., 2018, vol. 5, p. 108. https://doi.org/10.15669/pnst.5.108

    Article  Google Scholar 

  30. Polichetti, M., Adesso, M.G., and Pace, S., Phys. A (Amsterdam, Neth.), 2004, vol. 339, p. 119. https://doi.org/10.1016/j.physa.2004.03.051

  31. Adesso, M.G., Uglietti, D., Flukiger, R., Polichetti, M., and Pace, S., Phys. Rev. B, 2006, vol. 73, p. 092513. https://doi.org/10.1103/PhysRevB.73.092513

    Article  ADS  Google Scholar 

  32. Buchkov, K., Galluzzi, A., Mancusi, D., Nazarova, E., Pace, S., and Polichetti, M., Phys. Scr., 2019, vol. 94, no. 8, p. 085804. https://doi.org/10.1088/1402-4896/ab080e

    Article  ADS  Google Scholar 

  33. Mancusi, D., Galluzzi, A., Pace, S., and Polichetti, M., J. Phys.: Conf. Ser., 2018, vol. 956, p. 012017. https://doi.org/10.1088/1742-6596/956/1/012017

    Article  Google Scholar 

  34. Mancusi, D., Galluzzi, A., Pace, S., and Polichetti. M., J. Supercond. Novel Magn., 2018, vol. 31, p. 2011. https://doi.org/10.1007/s10948-017-4456-z

    Article  Google Scholar 

  35. Mancusi, D., Galluzzi, A., Pace, S., and Polichetti, M., J. Phys.: Condens. Matter, 2017, vol. 29, p. 425701. https://doi.org/10.1088/1361-648X/aa8213

    Article  ADS  Google Scholar 

  36. Pramanik, A.K. and Banerjee, A., J. Phys.: Condens. Matter, 2008, vol. 20, p. 275207. https://doi.org/10.1088/0953-8984/20/27/275207

    Article  Google Scholar 

  37. Bajpai, A. and Banerjee, A., Phys. Rev. B, 1997, vol. 55, no. 18, p. 12439. https://doi.org/10.1103/PhysRevB.55.12439

    Article  ADS  Google Scholar 

  38. Chen, D.-X., Skumryev, V., and Bozzo, B., Rev. Sci. Instrum., 2011, vol. 82, p. 045112. https://doi.org/10.1063/1.3581224

    Article  ADS  Google Scholar 

  39. Fukuma, K. and Torii, M., Geochem., Geophys., Geosyst., 2011, vol. 12, no. 8, p. Q07Z28. https://doi.org/10.1029/2011GC003694

    Article  Google Scholar 

  40. Chakravarti, A., Ranganathan, R., and Raychaudhuri, A.K., Pramana, 1991, vol. 36, p. 231. https://doi.org/10.1007/BF02845708

    Article  ADS  Google Scholar 

  41. Bajpai A. and Banerjee, A., Rev. Sci. Instrum., 1997, vol. 68, p. 4075. https://doi.org/10.1063/1.1148349

    Article  ADS  Google Scholar 

  42. Banerjee, A., Rastogi, A.K., Kumar, M., Das, A., Mitra, A., and Majumdar, A.K., J. Phys. E: Sci. Instrum., 1989, vol. 22, no. 4, p. 2303. https://doi.org/10.1088/0022-3735/22/4/005

    Article  Google Scholar 

  43. Gupta, R., Bhatti, I.N., and Pramanik, A.K., J. Magn. Magn. Mater., 2018, vol. 465, p. 193. https://doi.org/10.1016/j.jmmm.2018.05.105

    Article  ADS  Google Scholar 

  44. Gupta, R., Bhatti, I.N., and Pramanik, A.K., J. Phys.: Condens. Matter, 2020, vol. 32, no. 23, p. 035803. https://doi.org/10.1088/1361-648X/ab49a1

    Article  ADS  Google Scholar 

  45. Gupta, R. and Pramanik, A.K., J. Phys.: Condens. Matter, 2017, vol. 29, no. 11, p. 115801. https://doi.org/10.1088/1361-648X/aa5532

    Article  ADS  Google Scholar 

  46. Bhatti, I.N., Mahato, R.N., Bhatti, I.N., and Ahsan, M.A.H., Mater. Today: Proc., 2019, vol. 17, no. 1 p. 216. https://doi.org/10.1016/j.matpr.2019.06.421

    Article  Google Scholar 

  47. Bhatti, I.N., Mahato, R.N., Bhatti, I.N., and Ahsan, M.A.H., Solid State Sci., 2020, vol. 108, p. 106384. https://doi.org/10.1016/j.solidstatesciences.2020.106384

    Article  Google Scholar 

  48. Wang, X.L., Horvat, J., Liu, H.K., Liand, A.H., and Dou, S.X., Solid State Commun., 2001, vol. 118, no. 1, p. 27. https://doi.org/10.1016/S0038-1098(01)00033-3

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imtiaz Noor Bhatti.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, I.N., Pramanik, A.K. Laboratory-Constructed Instrumentation for the Characterization of First and Higher-order Harmonics of Dynamic Susceptibility: A Low Cost AC Susceptometer. Instrum Exp Tech 66, 103–110 (2023). https://doi.org/10.1134/S0020441223010050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223010050

Navigation