Skip to main content
Log in

Time and Energy Resolutions of Electromagnetic Calorimeter Prototypes Based on Lead Tungstate Crystals

  • NUCLEAR EXPERIMENT TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

The time and energy resolutions were measured for four prototypes of the PHOS electromagnetic calorimeter for the ALICE experiment at the Large Hadron Collider at CERN. Each prototype was made up of nine identical detection elements assembled as a 3 × 3 array. The detection element was based on a lead tungstate (PbWO4) scintillating crystal with a length of 180 mm and a cross section of 22 × 22 mm2, which was viewed from its end face by a photodetector. Avalanche photodiodes and silicon photomultipliers with different active areas (Hamamatsu, Japan) were used as photodetectors. The measurements were made with the electron component of secondary particle beams of the PS proton synchrotron at CERN in the momentum range of 1−10 GeV/c at a temperature of 17.5°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. ALICE Collab., Dellacasa, G., et al., Alice Technical Design Report CERN/LHCC 99-4, ALICE TDR 2, CERN, 1999.

  2. ALICE Collab., Aamodt, K., et al., J. Instrum., 2008, vol. 3, p. S08002. https://doi.org/10.1088/1748-0221/3/08/S08002

    Article  Google Scholar 

  3. Wigmans, R., Calorimetry. Energy Measurements in Particle Physics, Oxford: Clarendon Press, 2008.

    Google Scholar 

  4. CMS Collab., Chatrchyan, S., et al., J. Instrum., 2008, vol. 3, p. S08004. https://doi.org/10.1088/1748-0221/3/08/S08004

    Article  Google Scholar 

  5. ATLAS Collab., Aad, G., et al., J. Instrum., 2008, vol. 3, p. S08003. https://doi.org/10.1088/1748-0221/3/08/S08003

    Article  Google Scholar 

  6. https://www.hamamatsu.com/eu/en/product/optical-sensors/apd/si-apd/S8664-55.html. Accessed April 24, 2022.

  7. Aleksandrov, D.V., Burachas, S.F., Ippolitov, M.S., Lebedev, V.A., Manko, V.I., Nikulin, S.A., Nyanin, A.S., Sibiriak, I.G., Tsvetkov, A.A., Vasiliev, A.A., Vinogradov, A.A., Bogolyubsky, M.Yu., Kharlov, Yu.V., Konstantinov, S.A., Petrov, V.S., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, vol. 550, p. 169. https://doi.org/10.1016/j.nima.2005.03.174

    Article  Google Scholar 

  8. Yin, Z.B., Liu, L.J., Muller, H., Rohrich, D., Sibiryak, I., Skaali, B., Vinogradov, A., Wang, D., Wang, Y.P., Zhang, F., and Zhou, D.C., J. Phys.: Conf. Ser., 2011, vol. 293, p. 012019. https://doi.org/10.1088/1742-6596/293/1/012019

    Article  Google Scholar 

  9. ALICE Collab., Adam, J., et al., Phys. Lett. B, 2016, vol. 754, p. 235. https://doi.org/10.1016/j.physletb.2016.01.020

    Article  ADS  Google Scholar 

  10. Balygin, K.A., Ippolitov, M.S., Klimov, A.I., Lebedev, V.A., Manko, V.I., Meleshko, E.A., Sibiryak, Yu.G., Akindinov, A.V., Izucheev, V.I., Arefiev, V.A., Vodopianov, A.S., Gorbunov, N.V., Kuzmin, N.A., Nomokonov, P.V., Petukhov, Yu.P., Rufanov, I.A., et al., Instrum. Exp. Tech., 2018, vol. 61, no. 5, pp. 639–644. https://doi.org/10.1134/S0020441218040140

    Article  Google Scholar 

  11. https:/www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s12572-010_etc_kapd1045e.pdf.Accessed April 24, 2022.

  12. https://cargille.com/mounting-media. Accessed April 24, 2022.

  13. https://indico.jinr.ru/event/681/contributions/5565/attachments/4397/. Accessed April 24, 2022.

  14. https://indico.jinr.ru/event/681/contributions/5565/ attachments/4397/. Accessed April 24, 2022.

  15. https://root.cern.ch/. Accessed April 24, 2022.

  16. Ippolitov, M.S., Lebedev, V.A., Manko, V.I., Sibiriak, Yu.G., Akindinov, A.V., Vodopyanov, A.S., Gorbunov, N.V., Zaporozhets, S.A., Nomokonov, P.V., and Rufanov, I.A., Instrum. Exp. Tech., 2017, vol. 60, no. 1, pp. 33–39. https://doi.org/10.1134/S002044121701002X

    Article  Google Scholar 

  17. Bogolyubsky, M., Ippolitov, M., Kuryakin, A., Manko, V., Muller, H., Nomokonov, P., Punin, V., Rohrich, D., Sadovsky, S., Sibiriak, I., Skaali, B., Sugitate, T., Vasil’ev, A., Vinogradov, A., Vodopianov, A., and Zhou, D., Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 598, p. 702. https://doi.org/10.1016/j.nima.2008.10.003

    Article  Google Scholar 

  18. Balygin, K.A., Ippolitov, M.S., Klimov, A.I., Manko, V.I., Meleshko, E.A., and Sibiryak, Yu.G., Instrum. Exp. Tech., 2017, vol. 60, no. 1, pp. 20–24. https://doi.org/10.1134/S002044121701016X

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to the employees at the accelerator department of CERN for providing undisturbed operation of the PS accelerator and the T9 secondary beamline. We express our gratitude to our colleagues in the ALICE experiment for their support and useful discussions of the results, to colleagues from the Kurchatov Institute National Research Centre for the useful comments in the discussion of the presented experimental results.

We also thank our colleagues from the electronics department of the Laboratory of High Energies at JINR for upgrading the TQDC unit to meet our requirements and for helping us to adjust and launch this unit.

Funding

This work was supported by the Kurchatov Institute National Research Centre, order no. 2767 dated October 28, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ippolitov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akindinov, A.V., Balygin, K.A., Grishuk, Y.V. et al. Time and Energy Resolutions of Electromagnetic Calorimeter Prototypes Based on Lead Tungstate Crystals. Instrum Exp Tech 66, 207–217 (2023). https://doi.org/10.1134/S0020441223010037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223010037

Navigation