Skip to main content
Log in

Research on Vibration Effect of Piezoresistive Pressure Sensor

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The measured wall pressure of high-speed train will be affected by train vibration due to the complex test environment. This paper is devoted to the investigation of the influence of vibration acceleration on the wall pressure measurement of high-speed trains. Aiming at the vibration-induced effect of piezoresistive pressure sensors, a vibration-pressure coupling laboratory platform is established. The output of the piezoresistive pressure sensor under different frequency vibration loads is obtained from the platform. The vibration and pressure sensor output signals are separated through an EEMD-based method. By the analysis of different vibration loads and the pressure sensor output signal, their internal relations are obtained. Moreover, the results provide theoretical guidance for measuring high-speed train wall pressure and the pressure under other acceleration loading environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. Raghu, S., Kim, H.D., and Setoguchi, T., Prog. Aerosp. Sci., 2002, vol. 38, p. 469. https://doi.org/10.1016/S0376-0421(02)00029-5

    Article  Google Scholar 

  2. Zhiyun Shen, J. China Railw. Soc., 2006, vol. 28, no. 4, p. 12.

    Google Scholar 

  3. Suzuki, M. and Tanemoto, K., J. Wind Eng. Ind. Aerodyn., 2003, vol. 91, no. 1, p. 209. https://doi.org/10.1016/S0167-6105(02)00346-X

    Article  Google Scholar 

  4. Jiali Liu, Jiye Zhang, and Weihua Zhang, J. China Railw. Soc., 2011, vol. 33, no. 9, p. 19.

    Google Scholar 

  5. Junhao Peng, Qing Jiang, Jianbin Tang, and Qianjun Zhou, Intstrum. Tech. Sens., 2014, vol. 8, no. 1, p. 9.

    Google Scholar 

  6. Chunjun Chen, Hongyang He, and Yunlong Shao, J. Southwest Jiaotong Univ., 2015, vol. 50, no. 3, p. 472.

    Google Scholar 

  7. Gradolph, C., Freidberger, A., Müller, G., and Wilde, J., Sens. Actuators, A, 2009, vol. 150, p. 69. https://doi-org-s.era.lib.swjtu.edu.cn/10.1016/j.sna.2008.12.007

    Article  Google Scholar 

  8. Yupeng Zhai, Zhijie Zhang, and Hao Zhang, J. Meas. Sci. Instrum., 2019, vol. 10, no. 2, p. 176.

    Google Scholar 

  9. Zhongliang Yu, Yulong Zhao, Lili Li, Bian Tian, Rongjun Cheng, and Cun Li, Micro Nano Lett., 2014, vol. 9, p. 680.

    Article  Google Scholar 

  10. Chao Deng, Chunjun Chen, Qi Sun, Dongwei Wang, and Zhiying He, Fluctuation Noise Lett., 2020, vol. 19, no. 2, p. 2050020. https://doi.org/10.1142/S0219477520500200

    Article  ADS  Google Scholar 

  11. Chunjun Chen, Chao Deng, and Dongwei Wang, Measurement, 2021, vol. 168, p. 108442. https://doi.org/10.1016/j.measurement.2020.108442

    Article  Google Scholar 

  12. Maliha Farhath, and Mst. Fateha Samad, J. Comput. Electron., 2020, vol. 19, p. 310. https://doi.org/10.1007/s10825-019-01429-w

    Article  Google Scholar 

  13. Clark, S.K. and Wise, K.D., IEEE Trans. Electron Devices, 1979, vol. 16, no. 12, p. 1887. https://doi.org/10.1109/T-ED.1979.19792

    Article  ADS  Google Scholar 

  14. Herrera-May, A.L., Soto-Cruz, B.S., Lopez-Huerta, F., and Aguilera Cortes, L.A., Rev. Mex. Fis., 2009, vol. 55, no. 1, p. 14.

    Google Scholar 

  15. Fiorillo, A.S., Critello, C.D., and Pullano, S.A., Sens. Actuators, A, 2018, vol. 281, p. 156. https://doi.org/10.1016/j.sna.2018.07.006

    Article  Google Scholar 

  16. Leger, P., Ide, I.M., and Paulter, P., Comput. Struct., 1990, vol. 36, p. 1153. https://doi.org/10.1002/smll.201800819

    Article  Google Scholar 

  17. Fei He, Hongqiang Liao, Jihong Zhu, and Zhongze Guo, Chin. J. Aeronaut., 2019, vol. 32, no. 6, p. 1416. https://doi.org/10.1016/j.cja.2019.03.031

    Article  Google Scholar 

  18. Stanii, M.M., Q. Appl. Math., 1955, vol. 12, no. 4, p. 361. https://doi.org/10.1090/qam/65382

    Article  Google Scholar 

  19. Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N., Tung, C., and Liu, H., Proc. R. Soc. A, 1998, vol. 454, no. 1971, p. 903. https://doi.org/10.1098/rspa.1998.0193

  20. Wu, Z.H. and Huang, N.E., Adv. Adapt. Data Anal., 2009, vol. 1, no. 1, p. 1. https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  21. Hongyang He, Chunjun Chen, Xiaolang Miao, and Fasheng He, J. Vib. Shock, 2015, vol. 34, no. 19, p. 71.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (grants nos. 51975487 and 51475387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chunjun.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuxiao, C., Chunjun, C. & Chao, D. Research on Vibration Effect of Piezoresistive Pressure Sensor. Instrum Exp Tech 65, 653–667 (2022). https://doi.org/10.1134/S0020441222040170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222040170

Navigation