Skip to main content
Log in

Stand for Experimentally Studying Local Parameters of Chemically Active Induction Discharge Plasma

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

An experimental stand for studying the local parameters of a chemically active plasma of an induction discharge maintained at low pressure is described. Taking into account the limitations caused by the peculiarities of working with chemically aggressive media, a method is proposed for changing the spatially localized plasma parameters of the discharge using “fast” electrical probes. Methods for improving the accuracy of probe methods and smoothing the experimental current-voltage characteristics are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Polak, L.S., Ovsyannikov, A.A., Slovetskii D.I., and Vurzel’, F.B., Teoreticheskaya i prikladnaya plazmokhimiya (Theoretical and Applied Plasma Chemistry), Moscow: Nauka, 1975.

  2. Slovetskii, D.I., Khimiya plazmy. Sbornik statei (Plasma Chemistry. Collection of Works), Smirnov, B.M., Ed., Moscow: Atomizdat, 1974, issue 1, p. 114.

  3. Rusanov, V.D., Fridman, A.A., and Sholin, G.V., Khimiya plazmy. Sbornik statei (Plasma Chemistry. Collection of Works), Smirnov, B.M., Ed., Moscow: Atomizdat, 1978, issue 5, p. 64.

  4. McDonald, H.O. and Stephenson, J.B., Chemical Vapor Deposition of Group IVB, VB, and VIB Elements: A Literature Review US Department of Interior, Washington, DC: Department of the Interior, Bureau of Mines, 1979, p. 5. https://archive.org/details/chemicalvaporde00mcdo/page/n7/mode/2up.

    Google Scholar 

  5. Shabarova, L.V., Sennikov, P.G., Kornev, R.A., Plekhovich, A.D., and Kutyin, A.M., High Energy Chem., 2019, vol. 53, no. 6, p. 482. https://doi.org/10.1134/S0018143919060146

    Article  Google Scholar 

  6. Vodopyanov, A.V., Golubev, S.V., Mansfeld, D.A., Sennikov, P.G., and Drozdov, Yu.N., Rev. Sci. Instrum., 2011, vol. 82, p. 063503. https://doi.org/10.1063/1.3599618

    Article  ADS  Google Scholar 

  7. Sennikov, P.G., Kornev, R.A., and Shishkin, A.I., Plasma Chem. Plasma Process., 2017, vol. 37, no. 4, p. 997. https://doi.org/10.1007/s11090-017-9821-y

    Article  Google Scholar 

  8. Kornev, R.A., Sennikov, P.G., Shabarova, L.V., Shishkin, A.I., Drozdova, T.A., and Sintsov, S.V., High Energy Chem., 2019, vol. 53, no. 3, p. 246. https://doi.org/10.1134/S001814391903010X

    Article  Google Scholar 

  9. Kornev, R.A., Sennikov, P.G., Sintsov, S.V., and Vodopyanov, A.V., Plasma Chem. Plasma Process., 2017, vol. 37, no. 6, p. 1655. https://doi.org/10.1007/s11090-017-9846-2

    Article  Google Scholar 

  10. Godyak, V.A. and Demidov, V.I., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 26, p. 233001. https://doi.org/10.1088/0022-3727/44/23/233001

    Article  ADS  Google Scholar 

  11. Akatsuka, H., Adv. Phys.: X, 2019, vol. 4, p. 1592707. https://doi.org/10.1080/23746149.2019.1592707

    Article  Google Scholar 

  12. Isola, L.M., Gómez, B.J., and Guerra, V., J. Phys. D: Appl. Phys., 2010, vol. 43, no. 1, p. 015202. https://doi.org/10.1088/0022-3727/43/1/015202

    Article  ADS  Google Scholar 

  13. Ochkin, V.N., Spektroskopiya nizkotemperaturnoi plazmy (Spectroscopy of Low-Temperature Plasma), Moscow: Fizmatlit, 2006.

  14. Sintsov, S., Vodopyanov, A., and Mansfeld, D., AIP Adv., 2019, vol. 9, no. 10, p. 1. https://doi.org/10.1063/1.5115326

    Article  Google Scholar 

  15. Sintsov, S., Tabata, K., Mansfeld, D., Vodopyanov, A., and Komurasaki, K., J. Phys. D: Appl. Phys., 2020, vol. 53, no. 30, p. 1. https://doi.org/10.1088/1361-6463/ab8999

    Article  Google Scholar 

  16. Mansfeld, D., Sintsov, S., Chekmarev, N., and Vodopyanov, A., J. CO2 Util., 2020, vol. 40, p. 101197. https://doi.org/10.1016/j.jcou.2020.101197

  17. Sintsov, S.V., Vodopyanov, A.V., Viktorov, M.E., Morozkin, M.V., and Glyavin, M.Yu., J. Infrared, Millimeter, Terahertz Waves, 2020, vol. 41, no. 5, p. 711. https://doi.org/10.1007/s10762-020-00694-2

    Article  Google Scholar 

  18. Bogaerts, A., De Bie, C., Eckert, M., Georgieva, V., Martens, T., Neyts, E., and Tinck, S., Pure Appl. Chem., 2010, vol. 82, no. 6, p. 1283. https://doi.org/10.1351/PAC-CON-09-09-20

    Article  Google Scholar 

  19. Kruger, C.H., Owano, T., Gordon, M., and Laux, C., Pure Appl. Chem., 1992, vol. 64, no. 5, p. 607. https://doi.org/10.1007/BF01023912

    Article  Google Scholar 

  20. Xu, K.G. and Doyle, S.J., J. Vac. Sci. Technol., A, 2016, vol. 34, no. 5, p. 513. https://doi.org/10.1116/1.4959565

    Article  Google Scholar 

  21. Evdokimov, K.E., Konishchev, M.E., Chzhilei, S., and Pichugin, V.F., Instrum. Exp. Tech., 2016, vol. 59, no. 6, p. 816. https://doi.org/10.1134/S0020441216050055

    Article  Google Scholar 

  22. Khattak, H.K., Buanucci, P.B., and Slepkov, A.D., Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 10, p. 201818350. https://doi.org/10.1073/pnas.1818350116

    Article  Google Scholar 

  23. Vodopyanov, A., Mansfeld, D., Sintsov, S., and Viktorov, M., J. Phys.: Conf. Ser., 2019, vol. 1400, p. 077022. https://doi.org/10.1088/1742-6596/1400/7/077022

    Article  Google Scholar 

  24. Lobbia, R.B. and Gallimore, A.D., Rev. Sci. Instrum., 2010, vol. 81, no. 7, p. 073503. https://doi.org/10.1063/1.3455201

    Article  ADS  Google Scholar 

  25. Solomatin, R.Yu. and Grashin, S.A., Probl. At. Sci. Technol., Ser.: Thermonucl. Fusion, 2017, vol. 40, no. 2, p. 55. https://doi.org/10.21517/0202-3822-2017-40-2-55-60

    Article  Google Scholar 

  26. Andruczyk, D., Tarrant, R.N., James, B.W., Bilek, M.M.M., and Warr, G.B., Plasma Sources Sci. Technol., 2006, vol. 15, no. 3, p. 533. https://doi.org/10.1088/0963-0252/15/3/032

    Article  ADS  Google Scholar 

  27. Hargittai, S., Comput. Cardiol., 2005, vol. 32, p. 763. https://doi.org/10.1109/CIC.2005.1588216

    Article  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 20-13-00035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sintsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sintsov, S.V., Preobrazhensky, E.I., Kornev, R.A. et al. Stand for Experimentally Studying Local Parameters of Chemically Active Induction Discharge Plasma. Instrum Exp Tech 65, 419–425 (2022). https://doi.org/10.1134/S0020441222030058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222030058

Navigation