Skip to main content
Log in

Study on Hybrid Test Control System Based on MATLAB-STM32

  • APPLICATION OF COMPUTER IN EXPERIMENTS
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Hybrid test is a new seismic test method combining numerical simulation with physical test. It is an advanced test method to evaluate the performance of nonlinear structures and systems. This paper proposes a novel hybrid test control system based on MATLAB-STM32. The system uses the STM32 microcontroller as the main controller and electrodynamic vibrator as excitation source of system. Furthermore, a complete set of hybrid test control system which includes physical hardware test and numerical software simulation is established by using MATLAB-STM32 communication technology, PID control method, displacement sensors, force sensors, etc. It provides a test platform for nonlinear test structures, components that are difficult to model, or components that require performance testing. This system realizes the function of real-time two-way communication between MATLAB and STM32 microcontroller. It uses the finite element software OpenSees to establish the numerical substructure, which solves the problem of the collaborative work between the numerical simulation test and the physical test of the experimental substructure, and can simulate the hybrid dynamic seismic test of the damping structure. To test the control performance of the designed system, this paper selects the viscoelastic dampers as the test substructure, and the performance detection and test analysis are completed for the hybrid test of single-layer frame structure with a viscoelastic damper. The test results show that the data communication between the upper and lower computers is stable and the whole control system performs well on both dynamic and static behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Nakashima, M., Philos. Trans. R. Soc., A, 2001, vol. 359, no. 1786, p. 1851. https://doi.org/10.1098/rsta.2001.0876

  2. Dologlou, E., Int. J. Remote Sens., 2014, vol. 35, no. 24, p. 8208. https://doi.org/10.1080/01431161.2014.980921

    Article  Google Scholar 

  3. Li, Y., Wu, B., Wang, Q., and Ou, J., China Civ. Eng. J., 2006, vol. 39, no. 7, p. 9. https://doi.org/10.3321/j.issn:1000-131X.2006.07.002

    Article  Google Scholar 

  4. Chen, Z., Xu, G., Wu, B., Sun, Y., Wang, H., and Wang, F., Earthquake Eng. Struct. Dyn., 2014, vol. 43, no. 7, p. 969. https://doi.org/10.1002/eqe.2382

    Article  Google Scholar 

  5. Nakashima, M., Kato, H., and Takaoka, E., Earthquake Eng. Struct. Dyn., 1992, vol. 21, no. 1, p. 79. https://doi.org/10.1002/eqe.4290210106

    Article  Google Scholar 

  6. Pearlman, L., IEEE Trans. Ind. Appl., 2004, vol. 51, no. 4, p. 14. https://doi.org/10.1109/HPDC.2004.1323474

    Article  Google Scholar 

  7. Takahashi, Y. and Fenve, G.L., Earthquake Eng. Struct. Dyn., 2006, vol. 35, no. 3, p. 267. https://doi.org/10.1002/eqe.518

    Article  Google Scholar 

  8. Kwon, O.S. and Nakata, N., J. Earthquake Eng., 2005, vol. 9, no. 5, p. 741. https://doi.org/10.1142/S1363246905002158

    Article  Google Scholar 

  9. Xu, G., Hao, W., Chen, Y., Wu, B., and Ou, J., Eng. Mech., 2013, vol. 30, no. 3, p. 417. https://doi.org/10.6052/j.issn.1000-4750.2011.10.0658

    Article  Google Scholar 

  10. Xu, Z.D., Wang, K.Y., and Guo, Y.Q., Nondestr. Test. Eval., 2016, vol. 32, no. 1, p. 1. https://doi.org/10.1080/10589759.2016.1149581

    Article  Google Scholar 

  11. Sangyam, T., Laohapiengsak, P., Chongcharoen, W., and Nilkhamhang, I., IEEE Trans. Autom. Control, 2010, vol. 40, no. 3, p. 1265.

    Google Scholar 

  12. Tang, K.S., Kim, F.M, Chen, G., and Kwong, S., IEEE Trans. Ind. Electron., 2001, vol. 48, no. 4, p. 757. https://doi.org/10.1109/41.937407

    Article  Google Scholar 

  13. Kim, W. and Choi, S.Y., Comput. Struct., 2018, vol. 196, p. 341. https://doi.org/10.1016/j.compstruc.2017.10.002

    Article  Google Scholar 

  14. Xiong, T., Pu, Z., Yi, J., and Tao, X., IET Control Theory Appl., 2020, vol. 14, no. 9, p. 1147. https://doi.org/10.1049/iet-cta.2019.0309

    Article  Google Scholar 

  15. Pan, P., Nakashima, M., and Tomofuji, H., Earthquake Eng. Struct. Dyn., 2005, vol. 34, no. 8, p. 869. https://doi.org/10.1002/eqe.457

    Article  Google Scholar 

  16. Ince, M., Yigit, T., and Isik, A.H., Int. J. Inf. Technol. Decis. Making, 2020, vol. 19, no. 2, p. 629. https://doi.org/10.1142/S0219622020500054

    Article  Google Scholar 

  17. Bartl, A., Mahdiabadi, M.K., Insam, C., Mayet, J., and Rixen, D.J., Mech. Syst. Signal Process., 2020, vol. 139, no. 15, p. 1215. https://doi.org/10.1016/j.ymssp.2019.106586

    Article  Google Scholar 

  18. Chen, Z., Salas-Avlia, J.R., Tao, Y., Yin, W., Zhao, Q., and Zhang, Z., Rev. Sci. Instrum., 2020, vol. 91, no. 2, p. 153. https://doi.org/10.1063/1.5130734

    Article  Google Scholar 

  19. Yuan, Y., Xiong, S., and Zhu, H., J. Southeast Univ., Nat. Sci. Ed., 2008, vol. 38, no. 5, p. 784. https://doi.org/10.3321/j.issn:1001-0505.2008.05.009

    Article  Google Scholar 

  20. Liu, J., Qiao, B., Zhang, X., Yan, R., and Chen, X., Mech. Syst. Signal Process., 2019, vol. 132, p. 122. https://doi.org/10.1016/j.ymssp.2019.06.024

    Article  ADS  Google Scholar 

  21. Jon, U., Kim, J., and Lee, H., Int. J. Automot. Technol., 2018, vol. 19, no. 6, p. 959. https://doi.org/10.1007/s12239-018-0093-1

    Article  Google Scholar 

  22. Phan, H.T., Itagaki, S., and Sato, Y., J. Rob. Mechatron., 2020, vol. 32, no. 5, p. 984. https://doi.org/10.20965/jrm.2020.p0984

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge supports from the National Key R&D Programs of China (2019YFE0121900), and the National Natural Science Foundation of China (nos. 52130807, 51878355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Qing Guo.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YL., Yang, TT., Guo, YQ. et al. Study on Hybrid Test Control System Based on MATLAB-STM32. Instrum Exp Tech 65, 218–231 (2022). https://doi.org/10.1134/S0020441222020191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222020191

Navigation