Skip to main content
Log in

Digital Detection of Optical Signals in a Near-Optical-Field Microscope

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

A digital electronic system for recovering an optical signal in an apertureless scanning near-optical-field microscope (ASNOM), which operates in the elastic scattering mode, is presented. A photodetector signal results from optical homodyning of light, for which a Michelson interferometer scheme is used. Oscillations of the probe tip at its resonance frequency (30–300 kHz), which initiate a periodic change in the tip–surface distance, are used as the modulating effect in the ASNOM. The amplitude of one or several higher harmonics of the tip oscillation frequency is used as the useful signal in the photocurrent spectrum. The additional phase modulation of homodyning light is provided by a periodic change in the length of the reference arm in the Michelson scheme, which allows one to reliably measure not only the amplitude of a near-field optical signal but also its phase. Digitization of the detector photocurrent signal directly at the input of the detecting system made it possible to perform complex algorithms for extracting useful signals. The modularity of the data-processing algorithms provides flexible signal-detection variants, as well as the reliable modification and adjustment of individual parts of an algorithm. The features of the instrument that generate measurement errors are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zenhausern, F., O’Boyle, M.P., and Wickramasinghe, H.K., Appl. Phys. Lett., 1994, vol. 65, no. 13, p. 1623. https://doi.org/10.1063/1.112931

    Article  ADS  Google Scholar 

  2. Zenhausern, F., Martin, Y., and Wickramasinghe, H.K., Science, 1995, vol. 269, no. 5227, p. 1083. https://doi.org/10.1126/science.269.5227.1083

    Article  ADS  Google Scholar 

  3. Martin, Y., Zenhausern, F., and Wickramasinghe, H.K., Appl. Phys. Lett., 1996, vol. 68, no. 18, p. 2475. https://doi.org/10.1063/1.115825

    Article  ADS  Google Scholar 

  4. Knoll, B., Keilmann, F., Kramer, A., and Guckenberger, R., Appl. Phys. Lett., 1997, vol. 70, no. 20, p. 2667. https://doi.org/10.1063/1.119255

    Article  ADS  Google Scholar 

  5. Huber, A., Kazantsev, D., Keilmann, F., Wittborn, J., and Hillenbrand, R., Adv. Mater., 2007, vol. 19, no. 17, p. 2209. https://doi.org/10.1002/adma.200602303

    Article  Google Scholar 

  6. Huber, A.J., Keilmann, F., Wittborn, J., Aizpurua, J., and Hillenbrand, R., Nano Lett., 2008, vol. 8, no. 11, p. 3766. https://doi.org/10.1021/nl802086x

    Article  ADS  Google Scholar 

  7. Knoll, B. and Keilmann, F., Nature, 1999, vol. 399, p. 134. https://doi.org/10.1038/20154

    Article  ADS  Google Scholar 

  8. Wurtz, G., Bachelot, R., and Royer, P., Rev. Sci. Instrum., 1998, vol. 69, no. 4, p. 1735. https://doi.org/10.1063/1.1148834

    Article  ADS  Google Scholar 

  9. Krenn, J.R., Dereux, A., Weeber, J.C., Bourillot, E., Lacroute, Y., Goudonnet, J.P., Schider, G., Gotschy, W., Leitner, A., Aussenegg, F.R., and Girard, C., Phys. Rev. Lett., 1999, vol. 82, p. 2590. https://doi.org/10.1103/PhysRevLett.82.2590

    Article  ADS  Google Scholar 

  10. Kazantsev, D.V., JETP Lett., 2006, vol. 83, no. 8, p. 323.

    Article  ADS  Google Scholar 

  11. Brehm, M., Taubner, T., Hillenbrand, R., and Keilmann, F., Nano Lett., 2006, vol. 6, p. 1307. https://doi.org/10.1021/nl0610836

    Article  ADS  Google Scholar 

  12. Berweger, S., Nguyen, D.M., Muller, E.A., Bechtel, H.A., Perkins, T.T., and Raschke, M.B., J. Am. Chem. Soc., 2013, vol. 135, no. 49, p. 18292. https://doi.org/10.1021/ja409815g

    Article  Google Scholar 

  13. Kumar, N., Mignuzzi, S., Su, W., and Roy, D., EPJ Tech. Instrum., 2015, vol. 2, no. 1, p. 1. https://doi.org/10.1140/epjti/s40485-015-0019-5

    Article  Google Scholar 

  14. Labardi, M., Patanè, S., and Allegrini, M., Appl. Phys. Lett., 2000, vol. 77, no. 5, p. 621. https://doi.org/10.1063/1.127064

    Article  ADS  Google Scholar 

  15. Hayazawa, N., Tarun, A., Inouye, Y., and Kawata, S., J. Appl. Phys., 2002, vol. 92, no. 12, p. 6983. https://doi.org/10.1063/1.1519945

    Article  ADS  Google Scholar 

  16. Schmid, T., Yeo, B.-S., Leong, G., Stadler, J., and Zenobi, R., J. Raman Spectrosc., 2009, vol. 40, no. 10, p. 1392. https://doi.org/10.1002/jrs.2387

    Article  ADS  Google Scholar 

  17. Batchelder, J.S. and Taubenblatt, M.A., Appl. Phys. Lett., 1989, vol. 55, no. 3, p. 215. https://doi.org/10.1063/1.102268

    Article  ADS  Google Scholar 

  18. Bek, A., Vogelgesang, R., and Kern, K., Rev. Sci. Instrum., 2006, vol. 77, no. 4, p. 043703. https://doi.org/10.1063/1.2190211

    Article  ADS  Google Scholar 

  19. Vaez-Iravani, M. and Toledo-Crow, R., Appl. Phys. Lett., 1993, vol. 62, no. 10, p. 1044. https://doi.org/10.1063/1.108789

    Article  ADS  Google Scholar 

  20. Hillenbrand, R. and Keilmann, F., Phys. Rev. Lett., 2000, vol. 85, p. 3029. https://doi.org/10.1103/PhysRevLett.85.3029

    Article  ADS  Google Scholar 

  21. Esteban, R., Vogelgesang, R., Dorfmüller, J., Dmitriev, A., Rockstuhl, C., Etrich, C., and Kern, K., Nano Lett., 2008, vol. 8, no. 10, p. 3155. https://doi.org/10.1021/nl801396r

    Article  ADS  Google Scholar 

  22. Ocelic, N., Huber, A., and Hillenbrand, R., Appl. Phys. Lett., 2006, vol. 89, no. 10, p. 101124. https://doi.org/10.1063/1.2348781

    Article  ADS  Google Scholar 

  23. http://www.innovative-dsp.com/support/manuals/p25m.pdf.

  24. Kazantsev, D.V. and Kazantseva, E.A., Instrum. Exp. Tech., 2020, vol. 63, no. 1, pp. 133–138. https://doi.org/10.1134/S0020441220010194

    Article  Google Scholar 

  25. Kazantsev, D.V and Kazantseva, E.A., Instrum. Exp. Tech., 2014, vol. 57, no. 5, pp. 631–639. https://doi.org/10.1134/S0020441214040046

    Article  Google Scholar 

  26. S-316. https://www.physikinstrumente.com/en/products/nanopositioning-piezo-flexure-stages/piezo-flexure-tilting-mirrors/s-310-s-316-piezo-z-and-tiptilt-scanner-300600/.

  27. S-316. https://static.physikinstrumente.com/fileadmin/user_upload/physik_instrumente/files/datasheets/S-310-S-316-Datasheet.pdf/.

  28. https://www.physikinstrumente.com/en/products/controllers-and-drivers/nanopositioning-piezo-controllers/e-503-piezo-amplifier-module-602200/.

  29. Cooley, J.W. and Tukey, J.W., Math. Comput., 1965, vol. 19, p. 297. https://doi.org/10.1090/S0025-5718-1965-0178586-1

    Article  Google Scholar 

Download references

Funding

The development and manufacture of low-noise high-speed signal preamplifier for an infrared CdHgTe photodetector were supported by the Russian Foundation for Basic Research (project no. 18-29-20122) within the framework of the project of ASNOM studies of semiconductor surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kazantsev.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazantsev, D.V., Kazantseva, E.A. Digital Detection of Optical Signals in a Near-Optical-Field Microscope. Instrum Exp Tech 65, 273–291 (2022). https://doi.org/10.1134/S0020441222020130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222020130

Navigation