Skip to main content
Log in

Accurate Determination of Oscillating Mass Displacement in Seismometry Using the Moiré Technique

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

In this paper, a new method based on the moiré technique is presented to calculate the displacement of the oscillating mass in seismometry and other oscillating systems in which the position and displacement of the mass are important. The oscillating system consists of a spring-suspended mass whose position is monitored using the moiré technique. To form the moiré pattern, two similar Ronchi gratings are used so that they are facing each other without physical contact. One of the gratings is fixed to the oscillating mass and the other to the body of the oscillating system. An arrangement consisting of a laser diode, a narrow slit, and a photodiode was also used to detect and record the signal from the displacement of the moiré fringes due to the oscillation of the suspended mass. Also, an algorithm for calculations and conversion of electrical signal into displacement signal is presented. To validate the equations and the proposed algorithm, simulated and real data were evaluated and the results were compared. The results show the high capability and accuracy of the moiré technique and proposed algorithm in determining the oscillating mass displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Telford, W.M., Geldart, L.P., Sheriff, R.E., and Keys, D.A., Applied Geophysics, Cambridge Univ. Press, 1990. https://doi.org/10.1017/S0016756800050858.

  2. Elliott, J.R., de Michele, M., and Gupta, H.K., Surv. Geophys., 2020, vol. 41, p. 1355. https://doi.org/10.1007/s10712-020-09608-2

    Article  ADS  Google Scholar 

  3. Agnew, D.C., History of Seismology: International Handbook of Earthquake and Engineering Seismology, Elsevier, 2002, vol. 81.

    Book  Google Scholar 

  4. Habbak, E., Nofal, H., Lotfy, E., EL-Sabban, S., and Nossair, Z., Arabian J. Geosci., 2016, vol. 9, p. 408. https://doi.org/10.1007/s12517-016-2422-x

    Article  Google Scholar 

  5. Rodgers, P.W., Bull. Seismol. Soc. Am., 1993, vol. 83, no. 2, p. 561. https://doi.org/10.1785/BSSA0820021071

    Article  Google Scholar 

  6. Havskov, J. and Alguacil, G., Instrumentation in Earthquake Seismology, Springer, 2002. https://doi.org/10.1007/978-3-319-21314-9.

  7. Catalano, A., Bruno, F.A., Galliano, C., Pisco, M., Vito Persiano, G., Cutolo, A., and Cusano, A., Sens. Actuators, A, 2017, vol. 253, p. 91. https://doi.org/10.1016/j.sna.2016.11.026

    Article  Google Scholar 

  8. Filograno, M., Pisco, M., Catalano, A., Forte, E., Aiello, M., Cavaliere, C., Soricelli, A., Davino, D., Visone, C., Cutolo, A., and Cusano, A., J. Lightwave Technol., 2017, vol. 35, no. 18, p. 3924.

    Article  ADS  Google Scholar 

  9. Tianying Chang, Zhongmin Wang, Yue Yang, Yaolu Zhang, Zhifeng Zheng, Liyao Cheng, and Hong-Liang Cui, Opt. Express, 2020, vol. 28, p. 6102. https://doi.org/10.1364/OE.385703

    Article  ADS  Google Scholar 

  10. Pisco, M., Bruno, F.A., Galluzzo, D., Nardone, L., Gruca, G., Rijnveld, N., Bianco, F., Cutolo, A., and Cusano, A., Sci. Rep., 2018, vol. 8, p. 6680.https://doi.org/10.1038/s41598-018-25082-8.

  11. Grattan, K.T.V. and Sun, T., Sens. Actuators, A, 2000, vol. 82, no. 1, p. 40. https://doi.org/10.1016/S0924-4247(99)00368-4

    Article  Google Scholar 

  12. Rasouli, S., Esmaeili, Sh., and Sobouti F., J. Opt. Photonics, 2016, vol. 10, no. 1, p. 3. http://ijop.ir/article-1-243-en.html.

    ADS  Google Scholar 

  13. Esmaeili, S., Ansari, A., and Hamzehloo, H., J. Seismol. Earthquake Eng., 2016, vol. 18. no. 2, p. 91. http://www.jsee.ir/article_240738.html.

    Google Scholar 

  14. Esmaeili, S., Ansari, A., and Hamzehloo, H., Opt. Eng., 2015, vol. 55, no.12, p. 105103. https://doi.org/10.1117/1.oe.55.12.121719

    Article  ADS  Google Scholar 

  15. Noakes, M.W., Petterson, B.J., and Werner, J.C., Proc. Annual Meeting of American Nuclear Society, Nashville, TN, 1990, CONF-900608-51.

  16. Wielandt, E., Int. Geophys., 2002, vol. 81, part A, pp. 283–304. https://doi.org/10.1016/S0074-6142(02)80221-2

  17. Esmaeili, S., Rasouli, S., Sobouti, F., and Esmaeili, S., Opt. Commun., 2012, vol. 285, no. 9, p. 2243. https://doi.org/10.1016/j.optcom.2011.12.006

    Article  ADS  Google Scholar 

  18. Rasouli, S. and Rajabi, Y., Opt. Laser Technol., 2016, vol. 77, p. 40. https://doi.org/10.1016/j.optlastec.2015.08.017

    Article  ADS  Google Scholar 

  19. Rasouli, S., Rajabi, Y., and Sarabi, H., Opt. Lasers Eng., 2013, vol. 51, no. 12, p. 1321. https://doi.org/10.1016/j.optlaseng.2013.05.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamseddin Esmaeili.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, S., Rajabi, Y. Accurate Determination of Oscillating Mass Displacement in Seismometry Using the Moiré Technique. Instrum Exp Tech 65, 354–361 (2022). https://doi.org/10.1134/S0020441222020129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222020129

Navigation