Skip to main content
Log in

The Use of Simultaneous Tuning of Several Control Parameters to Stabilize the Radiation Power of a Subterahertz Gyrotron when Tuning the Generation Frequency

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of theoretical and experimental studies aimed at ensuring long-term stability of the power of a subterahertz gyrotron when tuning the generation frequency are presented. Power stabilization is performed via the coordinated change in the technical parameters of the generation mode. Two pairs of such parameters are considered: the accelerating voltage and the temperature of the resonator coolant or the magnetic field and the temperature of the resonator coolant. As a result of experiments performed with a subterahertz gyrotron of a kilowatt power level, power stability was demonstrated at a level of several percent with a frequency tuning range of more than 100 MHz, which confirms the correctness of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Thumm, M., J. Infrared, Millimeter, Terahertz Waves, 2020, vol. 41, p. 1.https://doi.org/10.1007/s10762-019-00631-y

  2. Idehara, T., Sabchevski, S., and Glyavin, M., Appl. Sci., 2020, vol. 10, no. 3, p. 980. https://doi.org/10.3390/app10030980

    Article  Google Scholar 

  3. Sabchevski, S., Glyavin, M., Mitsudo, S., Tatematsu, Y., and Idehara, T., J. Infrared, Millimeter, Terahertz Waves, 2021, vol. 42, no. 7, p. 715. https://doi.org/10.1007/s10762-021-00804-8

    Article  Google Scholar 

  4. Torrezan, A.C., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., and Griffin, R.G., IEEE Trans. Electron Devices, 2011, vol. 58, no. 8, p. 2777. https://doi.org/10.1109/TED.2011.2148721

    Article  ADS  Google Scholar 

  5. Denysenkov, V.P., Prandolini, M.J., Gafurov, M., Sezer, D., Endeward, B., and Prisner, T.F., Phys. Chem. Chem. Phys., 2010, vol. 12, no. 22, p. 5786. https://doi.org/10.1039/c003697h

    Article  Google Scholar 

  6. Pereyaslavets, M., Idehara, T., Nishida, N., Yoshida, K., and Ogawa, I., IEEE Trans. Plasma Sci., 1999, vol. 27, no. 2, p. 363. https://doi.org/10.1023/A:1022616221713

    Article  ADS  Google Scholar 

  7. Fokin, A.P., Tsvetkov, A.I., Manuilov, V.N., Sedov, A.S., Bozhkov, V.G., Genneberg, V.A., Movshevich, B.Z., and Glyavin, M.Yu., Rev. Sci. Instrum., 2019, vol. 90, no. 12, p. 124705. https://doi.org/10.1063/1.5132831

    Article  ADS  Google Scholar 

  8. Antakov, I., Zasypkin, E., and Sokolov, E., Int. J. Infrared Millimeter Waves, 1993, vol. 14, no. 5, p. 1001. https://doi.org/10.1007/bf02084576

    Article  ADS  Google Scholar 

  9. Movshevich, B.Z., Tsvetkov, A.I., Glyavin, M.Yu., and Fokin, A.P., Instrum. Exp. Tech., 2020, vol. 63, no. 6, p. 830. https://doi.org/10.1134/S002044122006010X

    Article  Google Scholar 

  10. Kamenskii, M.V., Koshelev, M.A., Sedov, A.S., Skorokhodov, S.A., and Tsvetkov, A.I., Sbornik dokladov 10-oi Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Elektronika i mikroelektronika SVCh” (Sankt-Peterburg, 31 maya-4 iyunya 2021) (Proc. 10th All-Russian Scientific and Technical Conference “Electronics and Microelectronics Microwave” (St. Petersburg, May 31–June 4, 2021)), St. Petersburg: Saint-Petersburg Electrotechnical Univ. “LETI,” 2021, p. 252.

  11. Glyavin, M.Yu., Denisov, G.G., Luchinin, A.G., Morozkin, M.V., Fokin, A.P., Kholoptsev, V.V., and Tsvetkov, A.I., Tech. Phys. Lett., 2013, vol. 39, no. 1, p. 140. https://doi.org/10.1134/S1063785013010379

    Article  ADS  Google Scholar 

  12. Glyavin, M.Yu., Chirkov, A.V., Denisov, G.G., Fokin, A.P., Kholoptsev, V.V., Kuftin, A.N., Luchinin, A.G., Golubyatnikov, G.Yu., Malygin, V.I., Morozkin, M.V., Manuilov, V.N., Proyavin, M.D., Sedov, A.S., Sokolov, E.V., Tai, E.M., Tsvetkov, A.I., and Zapevalov, V.E., Rev. Sci. Instrum., 2015, vol. 86, no. 5, p. 054705. https://doi.org/10.1063/1.4921322

    Article  ADS  Google Scholar 

  13. Golubiatnikov, G.Yu., Koshelev, M.A., Tsvetkov, A.I., Fokin, A.P., and Glyavin, M.Yu., IEEE Trans. Terahertz Sci. Technol., 2020, vol. 10, no. 5, p. 502. https://doi.org/10.1109/TTHZ.2020.2984459

    Article  ADS  Google Scholar 

  14. Tsvetkov, A.I., Vodopyanov, A.V., Mansfeld, D.A., and Fokin, A.P., J. Infrared, Millimeter, Terahertz Waves, 2019, vol. 40, no. 10, p. 991. https://doi.org/10.1007/s10762-019-00622-z

    Article  Google Scholar 

  15. Zavol’skii, N.A., Zapevalov, V.E., Malygin, O.V., Moiseev, M.A., and Sedov, A.S., Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2009, vol. 52, no. 12, p. 972.

    Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (no. 14-19-01602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananichev, A.A., Sedov, A.S., Tsvetkov, A.I. et al. The Use of Simultaneous Tuning of Several Control Parameters to Stabilize the Radiation Power of a Subterahertz Gyrotron when Tuning the Generation Frequency. Instrum Exp Tech 65, 262–266 (2022). https://doi.org/10.1134/S0020441222020099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222020099

Navigation