Skip to main content
Log in

Rupture Tests of Reinforcing Fibers and a Unidirectional Laminate Using Acoustic Emissions

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Experiments on the fracture testing of reinforcing fibers of composite materials and specimens of unidirectional laminates were performed using acoustic-emission diagnostics. The results were used to establish the correspondence between the fractures in the structure of polymer composite materials (PCMs) at the micro-, meso-, and macroscale levels and the acoustic emission (AE) pulses recorded in this process and their energy and temporal parameters. The establishment of such phenomenological dependences makes it possible to carry out selection of the registered AE pulses, combining them into energy clusters of the lower (L), medium (M), and upper (U) levels, which correspond to micro-, meso-, and macroscale fractures, respectively, in the composite-material structure. By controlling the redistribution of the weight content of AE pulses (Wi) in the energy clusters, whose total level is WL + WM + WU = 100%, in the product loading process, the damage accumulation in the structure of the PCM package at different scale levels is monitored by evaluating the residual structural strength via comparison of the current values of the parameters Wi with the thresholds [Wi] that are registered upon material failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Matvienko, Yu.G., Vasil’ev, I.E., and Chernov, D.V., Savor. Lab., Diagn. Mater., 2019, no. 11, p. 45. https://doi.org/10.26896/1028-6861-2019-85-11-45-61

  2. Matvienko, Yu.G., Vasil’ev, I.E., and Chernov, D.V., Acta Mech., 2021, vol. 232, p. 1889. https://doi.org/10.1007/s00707-020-02866-6

    Article  Google Scholar 

  3. Matvienko, Yu.G., Vasil’ev, I.E., and Chernov, D.V., Zavod. Lab., Diagn. Mater., 2021, no. 4, p. 45. https://doi.org/10.26896/1028-6861-2021-87-4-61-70

  4. Vasil’ev, I.E., Matvienko, Yu.G., Chernov, D.V., and Elizarov, S.V., Probl. Mashinostr. Avtom., 2020, no. 2, p. 118.

  5. Ivanov, V.I. and Barat, V.A., Akustiko-emissionnaya diagnostika (Acoustic-Emission Diagnostics), Moscow: Spektr, 2017.

  6. Bigus, G.A., Daniev, Yu.F., Bystrova, N.A., and Galkin, D.I., Osnovy diagnostiki tekhnicheskikh ustroistv i sooruzhenii (Fundamentals for Diagnosing Technical Devices and Constructions), Moscow: Bauman Moscow State Technical Univ., 2015.

  7. Ono, K. and Gallego, A., Research and Applications of AE on Advanced Composites. Acoustic Emission. Springer Handbook of Acoustics, Rossing, T.D., Ed., New York: Springer, 2014, pp. 1209–1229.

    Google Scholar 

  8. Ono, K. and J. Sens., 2019, vol. 19, no. 7, p. 3129. https://doi.org/10.3390/s19143129

    Article  ADS  Google Scholar 

  9. Ono, K., Appl. Sci., 2019, vol. 9, no. 21, p. 4602. https://doi.org/10.3390/app9214602

    Article  Google Scholar 

  10. Sause, M.G.R., In Situ Monitoring of Fiber-Reinforced Composites, Springer Series in Materials Science, Springer, 2016. https://doi.org/10.1007/978-3-319-30954-5

    Book  Google Scholar 

  11. Katalog produktsii predpriyatii Kholdingovoi kompanii “Kompozit” (Product Catalog for Enterprises of “Kompozit” Holding Company), Moscow: AO Kholdingovaya kompaniya Kompozit, 2010.

  12. Ivanov, D.A., Sitnikov, A.I., and Shlyapin, S.D., Dispersnouprochnennye voloknistye i sloistye neorganicheskie kompozitsionnye materialy (Dispersion-Strengthened Fiber and Layered Inorganic Composite Materials), Il’in, A.A., Ed., Moscow: Moscow State Industrial Univ., 2010.

  13. Afanasov, I.M. and Lazoryak, B.I., Vysokotemperaturnye keramicheskie volokna. Uchebnoe posobie (High-Temperature Ceramic Fibers. Student’s Book), Moscow: Moscow State Univ., 2010.

  14. Terent’ev, A.D. and Ivanov, V.I., V Mire Nerazrushayushchego Kontrolya, 2021, vol. 24, no. 1, p. 42.

    Google Scholar 

  15. Brunner, A.J., Proc. 32nd European Conference on Acoustic Emission Testing, Prague, September 7–9, 2016, Prague: Czech Society for Nondestructive Testing, 2016, p. 55.

  16. Baensch, F., Zauner, M., Sanabria, S.J., Sause, M.G.R., Pinzer, B.R., Brunner, A.J., Stampanoni, M., and Niemz, P., Holzforschung, 2015, vol. 69, no. 8, p. 1015. https://doi.org/10.1515/hf-2014-0152

    Article  Google Scholar 

  17. Matvienko, Yu.G., Vasil’ev, I.E., Chernov, D.V., and Pankov, V.A., Russ. J. Nondestr. Test., 2019, vol. 55, no. 8, p. 570. https://doi.org/10.1134/S1061830919080084

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 20-19-00769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Vasil’ev.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhutov, N.A., Matvienko, Y.G., Ivanov, V.I. et al. Rupture Tests of Reinforcing Fibers and a Unidirectional Laminate Using Acoustic Emissions. Instrum Exp Tech 65, 305–313 (2022). https://doi.org/10.1134/S0020441222020014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222020014

Navigation