Skip to main content
Log in

Development of a Compact Multivariable Sensor Probe for Two-Phase Detection in High Temperature PbLi–argon Vertical Columns

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Existence of a two-phase flow in lithium-based Liquid Metal (LM) breeders for nuclear fusion blankets are a cause of concern due to critical issues including reduced tritium breeding ratio (TBR), generation of hot-spots and improper nuclear shielding. Additionally, a large density ratio between LM and gas requires experimental database towards development and validation of numerical models. Lead–lithium (PbLi) has gained immense focus for its various advantages and is utilized in several breeding-blanket concepts. In this view, a LM–gas two-phase detection diagnostics is imperative for PbLi environment. Two-phase detection in high electrical-conductivity fluids like LMs is greatly facilitated by electrical-conductivity probes due to ruggedness, fabrication ease and operational simplicity. However, corrosive nature of PbLi with high operational temperature severely restricts commercial electrical-insulations, a foremost requirement for electrical-conductivity based detection schemes. In this study, an electrical-conductivity and temperature based multivariable two-phase detection probe is developed using high-purity alumina coatings. Probe validation is performed in PbLi–Ar vertical column with LM temperature upto 400°C and time-averaged void-fractions upto 0.95, covering flow-regimes from bubbly flow upto in-box loss of coolant accident (LOCA). Developed probe provides high reliability and temporal resolution towards individual bubble detection through electrical-conductivity principle alongwith simultaneous temperature trends for two-phase mixture. Present paper discusses probe fabrication and calibration, LM–gas two-phase facility, time-averaged void-fraction estimations, bubble frequency and residence time estimations alongwith critical observations from the preliminary tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Tang, T., Zhang, Z., Meng, J.B., and Luo, D.L., Fusion Eng. Des., 2009, vol. 84, p. 2124. https://doi.org/10.1016/j.fusengdes.2009.02.017

    Article  Google Scholar 

  2. Malang, S., Borgstedt, H.U., Farnum, E.H., Natesan, K., and Vitkovski, I.V., Fusion Eng. Des., 1995, vol. 27, p. 570. https://doi.org/10.1016/0920-3796(95)90172-8

    Article  Google Scholar 

  3. Kordac, M. and Kosek, L., Fusion Eng. Des., 2017, vol. 124, p. 700. https://doi.org/10.1016/j.fusengdes.2017.05.100

    Article  Google Scholar 

  4. Fraile, A. and Polcar, T., Nucl. Fusion, 2020, vol. 60, p. 046018. https://doi.org/10.1088/1741-4326/ab73c2

    Article  ADS  Google Scholar 

  5. Sedano, L.A., Ciemat Technical Reports EURATOM/CIEMAT Fusion Association—103, National Magnetic Confinement Fusion Laboratory, 2007.

    Google Scholar 

  6. Keplinger, O., Shevchenko, N., and Eckert, S., Int. J. Multiphase Flow, 2019, vol. 121, p. 103111. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103111

    Article  Google Scholar 

  7. Xu, W., Xu, K.J., Wu, J.P., Yu, X.L. and Yan, X.X., Rev. Sci. Instrum., 2019, vol. 90, p. 065105. https://doi.org/10.1063/1.5089690

    Article  ADS  Google Scholar 

  8. Gundrum, T., Büttner, P., Dekdouk, B., Peyton, A., Wondrak, T., Galindo, V., and Eckert, S., Sensors, 2016, vol. 16, no. 1, p. 63. https://doi.org/10.3390/s16010063

    Article  ADS  Google Scholar 

  9. Saito, Y., Mishima, K., Tobita, Y., Suzuki, T., and Matsubayashi, M., Exp. Therm. Fluid Sci., 2005, vol. 29, no. 3, p. 323. https://doi.org/10.1016/j.expthermflusci.2004.05.009

    Article  Google Scholar 

  10. Keplinger, O., Shevchenko, N., and Eckert, S., IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 228, p. 012009. https://doi.org/10.1088/1757-899X/228/1/012009.

  11. Saito, Y., Mishima, K., Tobita, Y., Suzuki, T., and Matsubayashi, M., Appl. Radiat. Isot., 2004, vol. 61, no. 4, p. 683. https://doi.org/10.1016/j.apradiso.2004.03.110

    Article  Google Scholar 

  12. Saito, Y., Mishima, K., and Matsubayashi, M., Appl. Radiat. Isot., 2004, vol. 61, no. 4, p. 667. https://doi.org/10.1016/j.apradiso.2004.03.096

    Article  Google Scholar 

  13. Gardenghi, A.R., Filho, E.S., Chagas, D.G., Scagnolatto, G., Oliveira, R.M., and Tibiriçá, C.B., Fluids, 2020, vol. 5, no. 4, p. 216. https://doi.org/10.3390/fluids5040216

    Article  ADS  Google Scholar 

  14. Bertola, V., in Modelling and Experimentation in Two-Phase Flow, International Centre for Mechanical Sciences (Courses and Lectures), Bertola, V., Eds., Vienna: Springer, 2003, vol. 450, p. 281. https://doi.org/10.1007/978-3-7091-2538-0_6

    Book  Google Scholar 

  15. Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal Hydraulics and Technologies, Nuclear Energy Agency, Organization for Economic Co-Operation and Development, 2015, NEA no. 7268. https://inis.iaea.org/collection/ NCLCollectionStore/_Public/46/133/46133907.pdf.

  16. Ariyoshi, G., Ito D., and Saito, Y., in Nuclear Back-End and Transmutation Technology for Waste Disposal, Nakajima, K., Ed., Tokyo: Springer, 2015, p. 107. https://doi.org/10.1007/978-4-431-55111-9_11.

  17. Valls, E.M., Cegielski, A., Jaros, M., Pérez-Ferragut, M., Batet, L., Sandeep, T., Chaudhari, V., and Freixa, J., Fusion Eng. Des., 2020, vol. 158, p. 111691. https://doi.org/10.1016/j.fusengdes.2020.111691

    Article  Google Scholar 

  18. Saraswat, A., Prajapati, A., Bhattacharyay, R., Chaudhuri, P., and Gedupudi, S., in Recent Advances in Mechanical Engineering, Lecture Notes in Mechanical Engineering, Kumar, A., Pal, A., Kachhwaha, S.S., and Jain, P.K., Eds., Singapore: Springer, 2021. https://doi.org/10.1007/978-981-15-9678-0_48.

  19. Martelli, D., Venturini, A., and Utili, M., Fusion Eng. Des., 2019, vol. 138, p. 183. https://doi.org/10.1016/j.fusengdes.2018.11.028

    Article  Google Scholar 

  20. Schulz, B., Fusion Eng. Des., 1991, vol. 14, p. 199. https://doi.org/10.1016/0920-3796(91)90002-8

    Article  Google Scholar 

  21. Jalili, M.R. and Zarrati, A.R., Sci. Iran., 2004, vol. 11, no. 4, p. 312.

    Google Scholar 

  22. Besagni, G., Inzoli, F., and Ziegenhein, T., Chem. Eng., 2018, vol. 2, no. 2, p. 13. https://doi.org/10.3390/chemengineering2020013

    Article  Google Scholar 

  23. Huang, S., Wu, X., Zong, B., Ma, Y., Guo, X., and Wang, D., Sci. Technol. Nucl. Install., 2018, vol. 2018, p. 7532618. https://doi.org/10.1155/2018/7532618

    Article  Google Scholar 

  24. Ariyoshi, G., PhD Thesis, 2019. https://doi.org/10.14989/doctor.k21887.

  25. Muñoz-Cobo, J.L., Chiva, S., Méndez, S., Monrós, G., Escrivá, A., and Cuadros, J.L., Sensors, 2017, vol. 17, no. 5, p. 1077. https://doi.org/10.3390/s17051077

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Saraswat.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswat, A., Prajapati, A., Bhattacharyay, R. et al. Development of a Compact Multivariable Sensor Probe for Two-Phase Detection in High Temperature PbLi–argon Vertical Columns. Instrum Exp Tech 65, 179–189 (2022). https://doi.org/10.1134/S0020441222010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222010109

Navigation