Skip to main content
Log in

Determination of the Spectrum of a Pulsed Ion Beam from Current and Voltage Oscillograms

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

An algorithm for calculating the energy spectrum of a pulsed ion beam generated by a direct-acting accelerator is presented. The ion spectrum is calculated using the oscillograms of the accelerating voltage, the experimental ion-current density, the one-dimensional Child–Langmuir (1D С–L) ratio, and the total current in the diode. The results of studying the ion spectrum generated by the TEMP-4M accelerator (250–300 kV, 150 ns) are presented. A good coincidence of the spectrum of ions that were calculated from the experimental ion-current density and 1D С–L equation is obtained. For ions whose energy is 95% of the total energy of the ion beam per pulse, the divergence between the spectra does not exceed 10% and is most significant in the region of low ion energies. The error in calculating the ion spectrum from the total current in the diode is much greater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Rusanov, V.D. and Fridman, A.A., Physics of Chemically Active Plasma, CRC Press, 2007.

    Google Scholar 

  2. Poate, J.M., Foti, G., and Jacobson, D.C., Surface Modification and Alloying by Laser, Ion, and Electron Beams, Berlin: Springer, 2013.

    Google Scholar 

  3. Was, G.S., Fundamentals of Radiation Materials Science. Metals and Alloys, Springer, 2017.

    Book  Google Scholar 

  4. Zinkle, S.J. and Snead, L.L., Scr. Mater., 2018, vol. 143, p. 154. https://doi.org/10.1016/j.scriptamat.2017.06.041

    Article  Google Scholar 

  5. Izotopy: svoistva, poluchenie, primenenie (Isptopes: Properties, Synthesizing, Application), Baranov, V.Yu., Ed., Moscow: Fizmatlit, 2005.

    Google Scholar 

  6. Shen, J., An, H.H., Liu, H.Y., Remnev, G.E., Nashilevskiy, A.V., Li, D.Y., Zhang, J., Zhong, H.W., Cui, X.J., Liang, G.Y., Qu, M., Yan, S., Zhang, X.F., Zhang, G.L., Yu, X., and Le, X.Y., Laser Part. Beams, 2016, vol. 34, no. 4, p. 742. https://doi.org/10.1017/S0263034616000707

    Article  ADS  Google Scholar 

  7. Kojima, S., Inoue, Sh., Dinh, H.Th., Hasegawa, N., Mori, M., Sakaki, H., Yamamoto, Y., Sasaki, T., Shiokawa, K., Kondo, K., Yamanaka, T., Hashida, M., Sakabe, S., Nishikino, M., and Kondo, K., Rev. Sci. Instrum., 2020, vol. 91, p. 053305. https://doi.org/10.1063/5.0005450

    Article  ADS  Google Scholar 

  8. Fleischer, R.L., Price, P.B., and Walker, R.M., J. Appl. Phys., 1965, vol. 36, p. 3645. https://doi.org/10.1063/1.1703059

    Article  ADS  Google Scholar 

  9. Azooz, A.A., Al-Nia’emi, S.H., and Al-Jubbori, M.A., Comput. Phys. Commun., 2012, vol. 183, p. 2470. https://doi.org/10.1016/j.cpc.2012.06.011

    Article  ADS  Google Scholar 

  10. Kasuya, K., Watanabe, M., Ido, D., Adachi, T., Nishigoria, K., Ebine, T., Okayama, H., Funatsu, M., Sunami, H., Wu, C., Hotta, E., Miyamoto, S., Yasuike, K., Nakai, S., Kawata, S., Okada, T., and Niu, K., Fusion Eng. Des., 1999, vol. 44, p. 319. https://doi.org/10.1016/S0920-3796(98)00292-0

    Article  Google Scholar 

  11. Mamyrin, B.A., Int. J. Mass Spectrom., 2001, vol. 206, p. 251. https://doi.org/10.1016/S1387-3806(00)00392-4

    Article  Google Scholar 

  12. Wiley, W.C. and MacLaren, I.H., Rev. Sci. Instrum., 1955, vol. 26, no. 12, p. 1150. https://doi.org/10.1063/1.1715212

    Article  ADS  Google Scholar 

  13. Pushkarev, A.I., Prima, A.I., Egorova, Yu.I., and Ezhov, V.V., Instrum. Exp. Tech., 2020, vol. 63, no. 3, pp. 295–309. https://doi.org/10.1134/S0020441220030148

    Article  Google Scholar 

  14. Bystritsky, V.M., Bystritsky, Vit.M., Dudkin, G.N., Nechaev, B.A., and Padalko, V.N., Phys. Part. Nucl., 2017, vol. 48, no. 4, p. 659. https://doi.org/10.1134/S1063779617040025

    Article  Google Scholar 

  15. Grigoriev, S.N., Melnik, Yu.A., Metel, A.S., and Volosova, M.A., J. Appl. Phys., 2017, vol. 121, p. 223302. https://doi.org/10.1063/1.4985249

    Article  ADS  Google Scholar 

  16. Novikov, N.V. and Teplova, Ya.A., J. Phys.: Conf. Ser., 2009, vol. 194, p. 082032. https://doi.org/10.1088/1742-6596/194/8/082032

    Article  Google Scholar 

  17. Bransden, B.H. and McDowell, M.R.C., Charge Exchange and the Theory of Ion-Atom Collisions, Clarendon Press, 1992.

    Google Scholar 

  18. Tolstikhina, I.Yu. and Shevelko, V.P., Phys.-Usp., 2018, vol. 61, p. 247. https://doi.org/10.3367/UFNe.2017.02.038071

    Article  ADS  Google Scholar 

  19. Pushkarev, A.I., Isakova, Y.I., and Khaylov, I.P., Rev. Sci. Instrum., 2014, vol. 85, p. 073303. https://doi.org/10.1063/1.4883177

    Article  ADS  Google Scholar 

  20. Pushkarev, A., Prima, A., Ezov, V., Miloichikova, I., and Petrenko, E., Laser Part. Beams, 2021, vol. 2021, article no. 8815697. https://doi.org/10.1155/2021/8815697

    Article  Google Scholar 

  21. Morozov, A.I., Introduction to Plasma Dynamics, Cambridge: Cambridge Int. Science Publ., 2010.

    Google Scholar 

  22. Langmuir, I., Phys. Rev., 1913, vol. 2, p. 450.

    Article  ADS  Google Scholar 

  23. https://www.originlab.com.

  24. Pushkarev, A., Zhu, X.P., Prima, A., Li, Y., Egorova, Yu., and Lei, M.K., Rev. Sci. Instrum., 2019, vol. 90, no. 10, p. 103303. https://doi.org/10.1063/1.5116598

    Article  ADS  Google Scholar 

  25. Renk, T.J., Schall, M., and Cooper, G.W., Sandia Report SAND2009-8165, 2009. https://pdfs.semanticscholar.org/8a81/6af20a5eae799e88f9403a8da9d38d241f6b.pdf.

  26. Humphries, S., Charged Particle Beams, New York: Wiley, 1990.

    Google Scholar 

  27. Pointon, T.D., J. Appl. Phys.,1989, vol. 66, p. 2879. https://doi.org/10.1063/1.344193

    Article  ADS  Google Scholar 

  28. Desjarlais, M.P., J. Appl. Phys., 1989, vol. 66, p. 4696. https://doi.org/10.1063/1.343827

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-38-90001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Pushkarev.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushkarev, A.I. Determination of the Spectrum of a Pulsed Ion Beam from Current and Voltage Oscillograms. Instrum Exp Tech 65, 52–59 (2022). https://doi.org/10.1134/S0020441222010080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222010080

Navigation