Skip to main content
Log in

Use of a Laser Interference Microscope for Estimating Fluctuations and the Equivalent Elastic Constant of Cell Membranes

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

An automated interference microscope has been used to determine the rms amplitude of fluctuations of living cells in vitro. The geometric thickness of cells has been calculated based on the measured optical path differences of light waves and the equivalent elastic constants of these cells have been estimated. The determined rms amplitude of fluctuations of the optical path difference is 0.3–2.7 nm, which corresponds to 4–40 nm rms amplitude of membrane-thickness fluctuations. The amplitudes of fluctuations of spread cells (endothelial cells and macrophages) are smaller relative to unattached cells (in vitro red blood cells and lymphocytes). At the same time, the amplitude of fluctuations observed in HeLa tumor cells spread on a substrate exceeds the amplitude of fluctuations of other spread cells (endothelial cells and macrophages). The obtained experimental data are in agreement with the earlier results obtained using other optical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Brochard-Wyart, F. and Lennon, J.F., J. Phys. (Paris), 1975, vol. 36, p. 1035. https://doi.org/10.1051/jphys:0197500360110103500

    Article  Google Scholar 

  2. Monzel, C. and Sengupta, K., J. Phys. D: Appl. Phys., 2016, vol. 49, p. 243002. https://doi.org/10.1088/0022-3727/49/24/243002

    Article  ADS  Google Scholar 

  3. Zidovska, A. and Sackmann, E., Phys. Rev. Lett., 2006, vol. 96, p. 048103. https://doi.org/10.1103/PhysRevLett.96.048103

    Article  ADS  Google Scholar 

  4. Yamaikina, M.V., Mansurov, V.A., and Ivashkevich, É.V., J. Eng. Phys. Thermophys., 1996, vol. 69, p. 283. https://doi.org/10.1007/bf02606946

    Article  Google Scholar 

  5. Popescu, G., Park, Y., Choi, W., Dasari, R.R., Feld, M.S., and Badizadegan, K., Blood Cells, Mol., Dis., 2008, vol. 41, p. 10. https://doi.org/10.1016/j.bcmd.2008.01.010

    Article  Google Scholar 

  6. Majeed, H., Sridharan, S., Mir, M., Ma, L., Min, E., Jung, W., and Popescu, G., J. Biophotonics, 2017, vol. 10, p. 177. https://doi.org/10.1002/jbio.201600113

    Article  Google Scholar 

  7. Mechanobiology of Cell-Cell and Cell-Matrix Interactions, Boston, Springer, 2011.

  8. Yusipovich, A.I., Parshina, E.Y., Brysgalova, N.Y., Brazhe, A.R., Brazhe, N.A., Lomakin, A.G., Levin, G.G., and Maksimov, G.V., J. Appl. Phys., 2009, vol. 105, p. 102037. https://doi.org/10.1063/1.3116609

    Article  ADS  Google Scholar 

  9. Tychinsky, V.P. and Tikhonov, A.N., Cell Biochem. Biophys., 2010, vol. 58, p. 107. https://doi.org/10.1007/s12013-010-9114-z

    Article  Google Scholar 

  10. Svitkina, T.M., Trends Cell Biol., 2020, vol. 30, p. 556. https://doi.org/10.1016/j.tcb.2020.03.005

    Article  Google Scholar 

  11. Popescu, G., Ikeda, T., Goda, K., Best-Popescu, C.A., Laposata, M., Manley, S., Dasari, R.R., Badizadegan, K., and Feld, M.S., Phys. Rev. Lett., 2006, vol. 97, p. 218101. https://doi.org/10.1103/PhysRevLett.97.218101

    Article  ADS  Google Scholar 

  12. Yusipovich, A.I., Novikov, S.M., Kazakova, T.A., Erokhova, L.A., Brazhe, N.A., Lazarev, G.L., and Maksimov, G.V., Quantum Electron., 2006, vol. 36, p. 874. https://doi.org/10.1070/QE2006v036n09ABEH013408

    Article  ADS  Google Scholar 

  13. Barer, R. and Joseph, S., Q. J. Microsc. Sci., 1954, vol. 95, p. 399.

    Google Scholar 

  14. Rappaz, B., Barbul, A., Hoffmann, A., Boss, D., Korenstein, R., Depeursinge, C., Magistretti, P.J., and Marquet, P., Blood Cells, Mol., Dis., 2009, vol. 42, p. 228. https://doi.org/10.1016/j.bcmd.2009.01.018

    Article  Google Scholar 

  15. NIST/SEMATECH e-Handbook of Statistical Methods, NIST, 2013. https://doi.org/10.18434/M32189

  16. Yusipovich, A.I., Cherkashin, A.A., Verdiyan, E.E., Sogomonyan, I.A., and Maksimov, G.V., Laser Phys. Lett., 2016, vol. 13, p. 085601. https://doi.org/10.1088/1612-2011/13/8/085601

    Article  ADS  Google Scholar 

  17. Lomakin, A.Yu. and Nadezhdina, E.S., Biochemistry (Moscow), 2010, vol. 75, p. 7. https://doi.org/10.1134/S0006297910010025

    Article  Google Scholar 

  18. Parshina, E.Yu., Yusipovich, A.I., Brazhe, A.R., Silicheva, M.A., and Maksimov, G.V., J. Biol. Phys., 2019, vol. 45, p. 367. https://doi.org/10.1007/s10867-019-09533-5

    Article  Google Scholar 

  19. Luneva, O.G., Sidorenko, S.V., Ponomarchuk, O.O., Tverskoy, A.M., Cherkashin, A.A., Rodnenkov, O.V., Alekseeva, N.V., Deev, L.I., Maksimov, G.V., Grygorczyk, R., and Orlov, S.N., Cell Physiol. Biochem., 2016, vol. 39, p. 81. https://doi.org/10.1159/000445607

    Article  Google Scholar 

  20. Lymphocytes: A Practical Approach, Klaus, G.G.B., Ed., Oxford Univ. Press, 1987.

    Google Scholar 

  21. Turovetskii, V.B., Zolotilin, S.A., Sarycheva, N.I., Kalikhevich, V.N., and Kamenskii, A.A., Bull. Exp. Biol. Med., 1994, vol. 117, p. 265.

    Article  Google Scholar 

  22. Tverskoi, A.M., Sidorenko, S.V., Klimanova, E.A., Akimova, O.A., Smolyaninova, L.V., Lopina, O.D., and Orlov, S.N., Biochemistry (Moscow),2016, vol. 81, p. 876. https://doi.org/10.1134/S0006297916080083

    Article  Google Scholar 

  23. Levin, G.G., Vishnyakov, G.N., and Minaev, V.L., Instrum. Exp. Tech., 2014, vol. 56, no. 6, pp. 686–690. https://doi.org/10.1134/S0020441214010060

    Article  Google Scholar 

  24. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A., Nat. Methods, 2012, vol. 9, p. 676. https://doi.org/10.1038/nmeth.2019

    Article  Google Scholar 

  25. Shock, I., Barbul, A., Girshovitz, P., Nevo, U., Korenstein, R., and Shaked, N.T., J. Biomed. Opt., 2012, vol. 17, p. 101509. https://doi.org/10.1117/1.Jbo.17.10.101509

    Article  ADS  Google Scholar 

  26. Bishitz, Y., Gabai, H., Girshovitz, P., and Shaked, N.T., J. Biophotonics, 2014, vol. 7, p. 624. https://doi.org/10.1002/jbio.201300019

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 19-79-30062). The work of A.I. Yusipovich, E.Yu. Parshina, A.A. Baizhumanov, and G.V. Maksimov was supported by the Molecular Technologies of Living Systems and Synthetic Biology Interdisciplinary Scientific and Educational School of the Moscow University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Ivanov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This work does not contain studies with people used as test subjects. All applicable international, national and/or institutional guidelines for the care and use of animals have been followed.

CONFLICT OF INTERESTS

The authors declare no conflicts of interests.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusipovich, A.I., Parshina, E.Y., Baizhumanov, A.A. et al. Use of a Laser Interference Microscope for Estimating Fluctuations and the Equivalent Elastic Constant of Cell Membranes. Instrum Exp Tech 64, 877–885 (2021). https://doi.org/10.1134/S0020441221060129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221060129

Navigation