Skip to main content
Log in

Comparative Analysis of the Brillouin Frequency Shift Determining Accuracy in Extremely Noised Spectra by Various Correlation Methods

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Using the same extremely noised data, two correlation methods for finding the maxima of Brillouin spectra are compared. The first method is a well-known method of correlating the received signal with the ideal Lorentzian function. In the second method, developed by the authors earlier, instead of the Lorentzian function, the same spectrum under study, but inverted along the frequency axis, is used (Backward correlation method, BWC). In addition to evaluating the accuracy of both methods, they are compared with the classical method of Lorentzian curve fitting. The accuracy of the considered methods is estimated depending on the probability of artefacts appearing in the Brillouin scattering spectra. It is shown that when the 9% probability of the artifact occurrence is exceeded, the BWC method shows better results than the other methods considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Madsen, K., Nielsen, H.B., and Tingleff, O., Methods for Non-Linear Least Squares Problems, London: Informatics and Mathematical Modeling, Technical Univ. of Denmark, 2004.

    Google Scholar 

  2. Seber, G. and Wild, C.J., Nonlinear Regression, New York: Wiley, 2003.

    MATH  Google Scholar 

  3. Dhliwayo, J., Webb, D.J., and Pannell, C.N., Proc. SPIE, 1996, vol. 2838, p. 276. https://doi.org/10.1117/12.259808

    Article  ADS  Google Scholar 

  4. DeMerchant, M., Brown, A.W., Bao, X., and Bremner, T.W., Proc. SPIE, 1998, vol. 3330, p. 315. https://doi.org/10.1117/12.316987

    Article  ADS  Google Scholar 

  5. Levenberg, K., Q. Appl. Math., 1944, vol. 2, no. 2, p. 164. https://doi.org/10.1090/QAM/10666

    Article  MathSciNet  Google Scholar 

  6. Fletcher, R., A Modified Marquardt Subroutine for Nonlinear Least Squares, Technical Report AERE-R 6799, Harwell: Oxford Univ. Department, Theoretical Physics Division, 1971.

  7. Barkov, F.L., Konstantinov, Yu.A., and Krivosheev, A.I., Fibers, 2020, vol. 8, no. 9, p. 60. https://doi.org/10.3390/fib8090060

    Article  Google Scholar 

  8. Haneef, S.M., Yang, Z., Thévenaz, L., Venkitesh, D., and Srinivasan, B., Opt. Express, 2018, vol. 26, no. 11, p. 14661. https://doi.org/10.1364/OE.26.014661

    Article  ADS  Google Scholar 

  9. Cheng Feng, Xin Lu, Preussler, S., and Schneider, T., J. Lightwave Technol., 2019, vol. 37, p. 5231. https://doi.org/10.1109/JLT.2019.2930919

    Article  ADS  Google Scholar 

  10. Farahani, M.A., Castillo-Guerra, E., and Colpitts, B.G., IEEE Sens. J., 2013, vol. 13, no. 12, p. 4589. https://doi.org/10.1109/JSEN.2013.2271254

    Article  ADS  Google Scholar 

  11. Farahani, M.A., Castillo Guerra, E., and Colpitts, B.G., Opt. Lett., 2011, vol. 36, no. 21, p. 4275. https://doi.org/10.1364/OL.36.004275

    Article  ADS  Google Scholar 

  12. Barkov, F.L., Konstantinov, Yu.A., Burdin, V.V., and Krivosheev, A.I., Instrum. Exp. Tech., 2020, vol. 63, pp. 487–493. https://doi.org/10.1134/S0020441220040223

    Article  Google Scholar 

  13. Belokrylov, M.E., Konstantinov, Yu.A., Latkin, K.P., Claude, D., Seleznev, D.A., Stepin, A.A., Konin, Yu.A., Shcherbakova, V.A., and Kashina, R.R., Instrum. Exp. Tech., 2020, vol. 63, pp. 481–486. https://doi.org/10.1134/S00204412200500129

    Article  Google Scholar 

Download references

Funding

The work was performed as part of the State Assignment no. AAAA-A19-119042590085-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Krivosheev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivosheev, A.I., Konstantinov, Y.A., Barkov, F.L. et al. Comparative Analysis of the Brillouin Frequency Shift Determining Accuracy in Extremely Noised Spectra by Various Correlation Methods. Instrum Exp Tech 64, 715–719 (2021). https://doi.org/10.1134/S0020441221050067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221050067

Navigation